People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikas, Dimitrios
Karlstad University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Experimental Investigations in the Processing of AISI H11 Powder Blends Enriched with Tungsten Carbide Nanoparticles for the Additive Manufacturing of Tailored Hot Working Tools in the Directed Energy Deposition (DED-LB/M)—Impact of Tungsten Carbide Nanoparticles on Microstructural and Mechanical Characteristics
- 2023Processing of Carbon Nanoparticle-Enriched AISI H11 Tool Steel Powder Mixtures in DED-LB/M for the AM of Forging Tools with Tailored Properties (Part II): Influence of Nanoscale Carbon Additives on Microstructure and Mechanical Propertiescitations
- 2022Effect of annealing on microstructure in railway wheel steelcitations
- 2019High temperature bi-axial low cycle fatigue behaviour of railway wheel steelcitations
- 2018Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsioncitations
- 2014Characterization of electrically insulating coatings for soft magnetic composite materials by means of surface sensitive analytical techniques
Places of action
Organizations | Location | People |
---|
article
Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion
Abstract
Pearlitic steels are commonly used for railway rails because they combine good strength and wear properties. During service, the passage of trains results in large accumulation of shear strains in the surface layer of the rail, sometimes leading to crack initiation. Knowledge of the material properties versus the shear strain in this layer is therefore important for fatigue life predictions. In this study, fully pearlitic R260 rail steel was deformed using a bi-axial torsion-compression machine to reach different shear strains. Microstructural parameters including interlamellar spacing, thickness of ferrite and cementite lamellae and dislocation density in the ferrite lamellae, as well as hardness were quantitatively characterized at different shear strain levels. Based on the microstructural observations and the quantification of the microstructural parameters, the local flow stresses were estimated based on boundary strengthening and dislocation strengthening models. A good agreement was found between the estimated flow stresses and the flow stresses determined from microhardness measurements.