Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salgado, M. V.

  • Google
  • 1
  • 7
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: microstructural and mechanical properties31citations

Places of action

Chart of shared publication
Tschiptschin, A. P.
1 / 9 shared
Ramirez, A. J.
1 / 8 shared
Mogili, N. V. V.
1 / 1 shared
Lopes, Éder Sócrates Najar
1 / 3 shared
Silva, Alex Matos Da
1 / 1 shared
Nunes, C. A.
1 / 5 shared
Oliveira, João Pedro
1 / 98 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Tschiptschin, A. P.
  • Ramirez, A. J.
  • Mogili, N. V. V.
  • Lopes, Éder Sócrates Najar
  • Silva, Alex Matos Da
  • Nunes, C. A.
  • Oliveira, João Pedro
OrganizationsLocationPeople

article

Effect of Ta and Nb additions in arc-melted Co-Ni-based superalloys: microstructural and mechanical properties

  • Tschiptschin, A. P.
  • Salgado, M. V.
  • Ramirez, A. J.
  • Mogili, N. V. V.
  • Lopes, Éder Sócrates Najar
  • Silva, Alex Matos Da
  • Nunes, C. A.
  • Oliveira, João Pedro
Abstract

<p>The current work characterizes the microstructure and mechanical properties of two arc melted Co-Ni-based superalloys containing in atomic percent: 1) Co-40Ni-10Al-7.5W-10Cr-3Ta-0.06B-0.6 C and 2) Co-40Ni-10Al-7.5W-10Cr-3Nb-0.06B-0.6 C. These two materials named 3Ta and 3Nb, respectively, were characterized by X-Ray diffraction analysis, differential scanning calorimetry, scanning electron microscopy, energy dispersive spectroscopy, electron backscatter diffraction and transmission electron microscopy. Furthermore, compression tests were performed from room temperature up to 1000 °C. The 3Ta and 3Nb alloys showed different as-cast microstructures that were confirmed by microstructural characterization and Scheil simulations. The phase transformation temperatures of minor phases were measured and calculated using a thermodynamic approach and some discrepancies observed on the calculated γ′-solvus temperatures reflect that the thermodynamic description of γ′ phase does not take into account the strong partition effect of Ta, Nb and Ti into γ′. As shown by DSC results, the γ′ phase was stable for both alloys up to 1000 °C, being the main reason for the 3Ta and 3Nb alloys to keep the yield stress above 500 MPa.</p>

Topics
  • microstructure
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • simulation
  • transmission electron microscopy
  • compression test
  • differential scanning calorimetry
  • electron backscatter diffraction
  • superalloy
  • spectroscopy