People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birosca, Soran
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Probing the temperature field and residual stress transformation in multi-track, multi-layered systemcitations
- 2024The corrosion mechanism of grey cast-iron yacht keel in marine environment during long-term exposure
- 2023A study of high cycle fatigue life and its correlation with microstructural parameters in IN713C nickel-based superalloycitations
- 2021Crystallographic orientation influence on slip system activation and deformation mechanisms in Waspaloy during in-situ mechanical loadingcitations
- 2020Mechanistic approach of Goss abnormal grain growth in electrical steelcitations
- 2020The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloycitations
- 2020On the correlation between magnetic domain and crystallographic grain orientation in grain oriented electrical steelscitations
- 2019Crystallographic orientation relationship with geometrically necessary dislocation accumulation during high-temperature deformation in RR1000 nickel-based superalloycitations
- 2019The dislocation behaviour and GND development in a nickel based superalloy during creepcitations
- 2018The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloycitations
- 2018A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloycitations
- 2017Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356-T61 aluminum alloyscitations
- 2017The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel.
- 2017The effect of a two-stage heat-treatment on the microstructural and mechanical properties of a maraging steelcitations
- 2016The effect of strain distribution on microstructural developments during forging in a newly developed nickel base superalloycitations
- 2016The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in aircitations
- 2016Deformation mechanisms of IN713C nickel based superalloy during Small Punch Testingcitations
- 2015Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction techniquecitations
- 2011A combined approach to microstructure mapping of an Al-Li AA2199 friction stir weldcitations
- 20113-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloycitations
- 20093D characterisation of short fatigue crack in Ti 6246
- 2009Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffractioncitations
- 2008Texture evolution in grain-oriented electrical steel during hot band annealing and cold rollingcitations
- 2007Influence of Normalizing Conditions on Electrical Steel Texture Development
- 2005Phase identification of oxide scale on low carbon steelcitations
- 2005Phase determination and microstructure of oxide scales formed on steel at high temperaturecitations
Places of action
Organizations | Location | People |
---|
article
A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloy
Abstract
<p>Up to date, IN713C Nickel-based superalloy has been continued to be the best alloy candidate for turbocharger wheel applications due to its adequate fatigue property and resistance to degradation under harsh operating environments. Throughout this study, three different batches of as-cast IN713C nickel based superalloys with different microstructures including columnar, equiaxed and transition microstructures were investigated. Strain control Low Cycle fatigue (LCF) tests were conducted for the three different microstructures, achieving fatigue life between 100 and runout at 100,000 cycles, depending on the testing parameters. The fracture mechanics and failure mechanism were correlated to the alloy's microstructure, texture and chemical composition under various LCF conditions using optical microscopy, SEM, EDX and EBSD. In the current study an exact correlation between alloy's microstructure/microtexture and LCF endurance is established. The results showed that equiaxed microstructure has a superior fatigue life than the transition microstructure by 10% and columnar microstructure by > 200% at a given temperature and strain rate. This large discrepancy was mainly due to the grain size differences between the studied microstructures. Here, it was evidenced that the grain size controls the dendrites length. It is also demonstrated that all microstructures exhibited a longer fatigue life at room temperature than at 650 °C, doubling or tripling the fatigue life of the tested IN713C. Furthermore, the high presence of precipitates between dendritic arms in all three microstructures was found to have great influence on crack propagation path. It was apparent that segregated carbides in between dendritic arms caused secondary crack initiation and crack path undulations during the LCF tests.</p>