People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stoschka, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Effect of Surface Finishing State on Fatigue Strength of Cast Aluminium and Steel Alloyscitations
- 2023Study of Local Fatigue Methods (TCD, N-SIF, and ESED) on Notches and Defects Related to Numerical Efficiencycitations
- 2023Energy-Based Fatigue Assessment of Defect-Afflicted Cast Steel Components by Means of a Linear-Elastic Approachcitations
- 2023A Numerically Efficient Method to Assess the Elastic–Plastic Strain Energy Density of Notched and Imperfective Cast Steel Componentscitations
- 2022Optimization of disc geometry and hardness distribution for better transferability of fatigue life prediction from disc to FZG testscitations
- 2022Fatigue strength study based on geometric shape of bulk defects in cast steelcitations
- 2022A Probabilistic Fatigue Strength Assessment in AlSi-Cast Material by a Layer-Based Approachcitations
- 2020Areal fatigue strength assessment of cast aluminium surface layerscitations
- 2020Validation Study on the Statistical Size Effect in Cast Aluminiumcitations
- 2019Notch Stress Intensity Factor (NSIF)-Based Fatigue Design to Assess Cast Steel Porosity and Related Artificially Generated Imperfectionscitations
- 2019Evaluation of surface roughness parameters and their impact on fatigue strength of Al-Si cast materialcitations
- 2019On the Statistical Size Effect of Cast Aluminiumcitations
- 2019Numerical crack growth study on porosity afflicted cast steel specimenscitations
- 2019Short and long crack growth of aluminium cast alloyscitations
- 2018Application of a area -Approach for Fatigue Assessment of Cast Aluminum Alloys at Elevated Temperaturecitations
- 2018Lifetime assessment of cast aluminium components based on CT-evaluated microstructural defects
- 2018Fatigue strength characterization of Al-Si cast material incorporating statistical size effectcitations
- 2018Surface topography effects on the fatigue strength of cast aluminum alloy AlSi8Cu3citations
- 2018Modification of a Defect-Based Fatigue Assessment Model for Al-Si-Cu Cast Alloyscitations
- 2017Fatigue assessment of welded and high frequency mechanical impact (HFMI) treated joints by master notch stress approachcitations
- 2017Simulation of lamellar cast iron components under TMF-loadscitations
- 2017Microporosity and statistical size effect on the fatigue strength of cast aluminium alloys EN AC-45500 and 46200citations
- 2016Application studies for fatigue strength improvement of welded structures by high-frequency mechanical impact (HFMI) treatmentcitations
- 2016Effect of weld defects on the fatigue strength of ultra high-strength steelscitations
- 2015Fatigue Strength of HFMI-treated and Stress-relief Annealed High-strength Steel Weld Jointscitations
- 2014Fatigue enhancement of thin-walled, high-strength steel joints by high-frequency mechanical impact treatmentcitations
- 2009Influence of welding process parameters on fatigue life by local sub-modelling
- 2009Introduction to an approach based on the (α+β) microstructure of elements of alloy Ti-6Al-4Vcitations
- 2007Fatigue analysis of forged aerospace components based on micro structural parameters
Places of action
Organizations | Location | People |
---|
article
Microporosity and statistical size effect on the fatigue strength of cast aluminium alloys EN AC-45500 and 46200
Abstract
This paper investigates the fatigue strength of two cast aluminium alloys, EN AC-45500 and 46200, dealing with the influence of microporosity and the statistical size effect. Small-scale round specimens are extracted from cylinder heads and crank cases as typical cast components in automotive industry. Uniaxial fatigue tests under alternating tension/compression loading are performed. Local microstructural properties, such as second dendrite arm spacing and microporosity, are characterized by means of metallography, fracture surface analysis utilizing scanning electron microscopy, and X-ray computed tomography. The measurements reveal significant differences in microporosity and microstructure depending on the extraction position and specimen type. These findings are reflected by the experimental test results showing that the microporosity majorly affects the fatigue behaviour with a maximum difference in fatigue resistance at ten million load-cycles of up to 39% in case of the EN AC-45500 specimens. Additional experiments involving two different EN AC-46200 specimen types exhibiting unequal highly-stressed volumes demonstrate a reduction of the high-cycle fatigue strength by 8% caused by the statistical size effect. Fatigue strength assessment incorporates the application of the model by Tiryakioğlu based on the extreme value distribution of the micropore sizes by Gumbel, as well as the √area approach by Murakami. The evaluated results agree well to the fatigue tests enabling a local fatigue strength assessment under consideration of manufacturing process dependent material characteristics.