Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alamoudi, A.

  • Google
  • 2
  • 9
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations18citations
  • 2016The Bendability of Ultra High strength Steels5citations

Places of action

Chart of shared publication
Clough, Andrew Richard
1 / 1 shared
Efthymiadis, Panagiotis
1 / 3 shared
Dashwood, Richard
2 / 77 shared
Hazra, S. K.
2 / 3 shared
Shollock, Barbara A.
1 / 12 shared
Lakshmi, R.
1 / 1 shared
Kumar, R. L. V.
1 / 1 shared
Shollock, B.
1 / 11 shared
Efthymiadis, P.
1 / 6 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Clough, Andrew Richard
  • Efthymiadis, Panagiotis
  • Dashwood, Richard
  • Hazra, S. K.
  • Shollock, Barbara A.
  • Lakshmi, R.
  • Kumar, R. L. V.
  • Shollock, B.
  • Efthymiadis, P.
OrganizationsLocationPeople

article

Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations

  • Clough, Andrew Richard
  • Efthymiadis, Panagiotis
  • Dashwood, Richard
  • Alamoudi, A.
  • Hazra, S. K.
  • Shollock, Barbara A.
  • Lakshmi, R.
Abstract

The mechanical performance of Dual Phase (DP) and Complex Phase (CP) steels was investigated by SEM analysis, tensile testing, Forming Limit Curve investigation and flange formability testing. The alloys of interest were Dual Phase (DP) untempered, Dual Phase (DP) tempered and Complex Phase (CP) steels. Phase content analysis showed that the distribution of the ferrite and martensite phases was the same for the two DP alloys, but the grain size and condition (tempered/untempered) for the martensite islands was much different in the two alloys. In the tempered DP steel, the smaller grain size for the martensite and the tempering process resulted in increased elongation, more formability and ability to form a flange (flangeability). In CP steels the soft ferrite phase is replaced by harder bainite, yielding a bainitic-martensitic microstructure. Bainite reduced the total elongation of the alloy during tensile testing, reduced the formability (especially under plane strain conditions) of the alloy but improved the flangeability of the alloy. Under flanging conditions, CP steels deformed to higher strains, at tighter radii with minimum springback. Microstructural inspections at the outer radius of the flanged specimens revealed that in CP steels bainite deforms similarly to martensite, therefore the strain partitioning is smaller in CP steels in comparison to DP steels. Plastic deformation in CP steels upon flanging occurs with the formation of strong slip bands in both martensite and bainite. In contrast, the martensite and ferrite grains in DP steels deform quite differently leading to strong strain localisations. Void nucleation and cracking occurred at the martensite islands or within the soft ferrite phase next to the martensite islands. In CP steels no voids or damage was observed within the matrix. A special case study was done with a thicker and stronger alloy, a Martensitic 1400 steel to reveal the flangeability limits for advanced high strength steels. Neither cracks nor damage were observed visually on ...

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • inclusion
  • grain size
  • phase
  • scanning electron microscopy
  • crack
  • strength
  • steel
  • forming
  • void
  • tempering