People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilkinson, Taylor M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanical behavior of rare‐earth orthophosphates near the monazite/xenotime boundary characterized by nanoindentation
Abstract
ow elastic modulus and hardness, as well as anomalous indentation behavior, have been observed during indentation of xenotime rare-earth orthophosphate ceramics (REPO4s) with compositions near the monazite/xenotime phase boundary. Pressure-induced phase transformation has been identified as a potential cause for both observations. This study comprehensively characterizes the mechanical properties and indentation behavior of four elemental REPO4 materials (EuPO4, GdPO4, TbPO4, and DyPO4) that span the monazite/xenotime phase boundary using ex situ nanoindentation for a range of loading rates and indentation depths. In situ nanoindentation within a SEM was used to correlate discrete load-depth behavior to the development of surface features. Anomalous, elbow-type behavior was not restricted to xenotimes, but occurred in all four materials; thus we concluded that the presence of an elbow in the indentation data was not a unique identifier of phase transformation in rare-earth orthophosphates. Furthermore, it was shown that the elastic modulus of each of these compositions approached the value predicted by simulations and hardness was consistently above 5 GPa, provided that the samples were processed to nearly full density.