People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soares, Guilherme Corrêa
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024On the grain level deformation of BCC metals with crystal plasticity modelingcitations
- 2024Design and Application of a Miniature Pneumatic Bellows Loading Device for In-Situ Tensile Testing inside the Scanning Electron Microscopecitations
- 2024On the use of an induced temperature gradient and full-field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316citations
- 2023Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Ratescitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Effects of strain rate and adiabatic heating on mechanical behavior of medium manganese Q&P steelscitations
- 2022High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
- 2022Synchronized full-field strain and temperature measurements of commercially pure titanium under tension at elevated temperatures and high strain ratescitations
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2022Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steelcitations
- 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressioncitations
- 2021Adiabatic heating and damage onset in a pultruded glass fiber reinforced composite under compressive loading at different strain rates.citations
- 2021Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurementscitations
- 2020Effects of Dynamic Strain Aging on Strain Hardening Behavior, Dislocation Substructure, and Fracture Morphology in a Ferritic Stainless Steelcitations
- 2019Adiabatic Heating of Austenitic Stainless Steels at Different Strain Ratescitations
- 2019Effects of Adiabatic Heating and Strain Rate on the Dynamic Response of a CoCrFeMnNi High-Entropy Alloycitations
- 2018Influence of Strain Amplitude on the Functional Properties and Aging at Room Temperature of a Superelastic NiTi Alloy
- 2017Effects of pseudoelastic cycling under different temperatures on physical and mechanical properties of a NiTi alloycitations
- 2017Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steelcitations
- 2017Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steelscitations
- 2016Influence of Strain Rate on the Functional Behavior of a NiTi Alloy Under Pseudoelastic Trainingcitations
Places of action
Organizations | Location | People |
---|
article
Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels
Abstract
Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.