People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Doquet, Véronique
Laboratoire Angevin de Mécanique, Procédés et InnovAtion
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2023Microstructure, Mechanical Properties, and Thermal Stability of Al-Al2O3 Nanocomposites Consolidated by ECAP or SPS from Milled Powderscitations
- 2022Anisotropic, rate-dependent ductile fracture of Ti-6Al-4V alloycitations
- 2022Analysis of fatigue crack growth under cyclic mode II + static biaxial compression
- 2021Anisotropic, rate-dependent ductile fracture of Ti-6Al-4V alloycitations
- 2021DIRECT MONITORING OF TWINNING/DETWINNING IN A TWIP STEEL UNDER REVERSED CYCLIC LOADINGcitations
- 2021Rate dependent anisotropic plasticity model of titanium alloy for aerospace application
- 2021Rate dependent anisotropic plasticity model of titanium alloy for aerospace application
- 2020A constitutive model for a rate and temperature-dependent, plastically anisotropic titanium alloycitations
- 2020A constitutive model for a rate and temperature-dependent, plastically anisotropic titanium alloycitations
- 2020Corrosion‐fatigue behaviour of Cr–Mo steel under biaxial tensioncitations
- 2020Multi-partner benchmark experiment of fatigue crack growth measurementscitations
- 2019Grain Boundary Sliding and Strain Rate Sensitivity of Coarse and Fine/Ultrafine Grained 5083 Aluminum Alloyscitations
- 2019Ultrafine versus coarse grained Al 5083 alloys: From low-cycle to very-high-cycle fatiguecitations
- 2019Ultrafine versus coarse grained Al 5083 alloys: From low-cycle to very-high-cycle fatiguecitations
- 2018Mixed mode II and III fatigue crack growth in a rail steelcitations
- 2017Fatigue crack growth in two TWIP steels with different stacking fault energiescitations
- 2017A sequential pre-cracking procedure to measure the mode-I fracture toughness of ultra pure bulk metallic glassescitations
- 2016Surface versus internal fatigue crack initiation in steel: Influence of mean stresscitations
- 2016Surface versus internal fatigue crack initiation in steel : Influence of mean stresscitations
- 2016Effect of biaxial cyclic tension on the fatigue life and damagemechanisms of Cr–Mo steelcitations
- 2016Effect of biaxial cyclic tension on the fatigue life and damage mechanisms of Cr–Mo steelcitations
- 2016Combined AFM, SEM and crystal plasticity analysis of grain boundary sliding in titanium at room temperaturecitations
- 2016Micro-scale measurements of plasticstrain field, and local contributions of slip and twinning inTWIP steels during in situ tensile testscitations
- 2015A micromechanical model of the viscoplastic behaviour of titanium accounting for its anisotropic and strain-rate-dependent viscositycitations
- 2014Influence of hydrogen and oxygen content on the mechanical behavior of zirconium between 275 and 325°C and titanium at 20°C
- 2014Multiscale investigation of ductile fracture mechanisms and strain localization under shear loading in 2024-T351 aluminum alloy and 36NiCrMo16 steelcitations
- 2014Room-temperature creep and stress relaxation in commercial purity titanium– Influence of the oxygen and hydrogen contents onincubation phenomena and aging-induced rejuvenation of thecreep potentialcitations
- 2012Modeling and Simulation of the Cooling Process of Borosilicate Glasscitations
- 2012Fracture of a borosilicate glass under triaxial tensioncitations
- 2012Fracture of a borosilicate glass under triaxial tensioncitations
- 2012Influence of hydrogen and oxygen content on the mechanical behavior of zirconium between 275 and 325°C and titanium at 20°C
- 2011Dwell-fatigue of a titanium alloy at room temperature under uniaxial or biaxial tensioncitations
- 2011Dwell-fatigue of a titanium alloy at room temperature under uniaxial or biaxial tension
- 2010Plasticity and asperity-induced fatigue crack closure under mixed-mode loadingcitations
- 2010Modeling of thermal shock-induced damage in a borosilicate glasscitations
- 20103D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4Vcitations
- 2009Effect of test frequency on fatigue strength of low carbon steelcitations
- 2009Influence of the loading path on fatigue crack growth under mixed-mode loadingcitations
- 2009Investigation of the dwell period's influence on the fatigue crack growth of a titanium alloycitations
- 2009Deformation and damage mechanisms in an alpha/beta 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogencitations
- 2008NUCLEATION OF CRACKS FROM SHEAR-INDUCED CAVITIES IN AN a/b TITANIUM ALLOY IN FATIGUE, ROOM-TEMPERATURE CREEP AND DWELL-FATIGUEcitations
- 2008A material and environment-dependent criterion for the prediction of fatigue crack paths in metallic structures
- 2001Effet de la fréquence et de l'environnement sur la propagation des fissures de fatigue en mode II dans un acier maraging
- 2001Branch crack development from the flank of a fatigue crack propagating in mode IIcitations
- 2001Influence of the test frequency and environment on mode II fatigue crack growth in a maraging steel
- 2000Effet de la fréquence de sollicitation et de l'environnement sur la propagation des fissures de fatigue en mode II dans l'acier maraging M250
Places of action
Organizations | Location | People |
---|
article
Micro-scale measurements of plasticstrain field, and local contributions of slip and twinning inTWIP steels during in situ tensile tests
Abstract
In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt. %) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60 to 80% of the plastic strain in some favourably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.