People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aremu, Adedeji
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loadingcitations
- 2023Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic compositescitations
- 2022Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Compositescitations
- 2019Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturingcitations
- 2018Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturingcitations
- 2017Compressive failure modes and energy absorption in additively manufactured double gyroid latticescitations
- 2017Non-linear Contact Analysis of Self-Supporting Lattice
- 2017Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturingcitations
- 2016A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser meltingcitations
- 2016Effects of Net and Solid Skins on Self-Supporting Lattice Structures
- 2014The BCC unit cell for latticed SLM parts; mechanical properties as a function of cell size
- 2014A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting
Abstract
Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisable by conventional manufacturing processes. This enables the production of advanced, functionally graded, components. However, for these designs to be successful, the relationships between lattice geometry and performance must be established. We do so here by examining the mechanical behaviour of uniform and graded density SLM Al-Si10-Mg lattices under quasistatic loading. As-built lattices underwent brittle collapse and non-ideal deformation behaviour. The application of a microstructure-altering thermal treatment drastically improved their behaviour and their capability for energy absorption. Heat-treated graded lattices exhibited progressive layer collapse and incremental strengthening. Graded and uniform structures absorbed almost the same amount of energy prior to densification,MJ/m3 andMJ/m3, respectively, but densification occurred at around 7% lower strain for the graded structures. Several characteristic properties of SLM aluminium lattices, including their effective elastic modulus and Gibson-Ashby coefficients, C1 and α, were determined; these can form the basis of new design methodologies for superior components in the future.