People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kartal, Mehmet E.
University of Aberdeen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024The influence of post-thermal treatments on microstructure and mechanical properties in A20X alloy fabricated through powder bed fusioncitations
- 2024Crystal plasticity based constitutive model for deformation in metastable β titanium alloyscitations
- 2022A Multiscale Constitutive Model for Metal Forming of Dual Phase Titanium Alloys by Incorporating Inherent Deformation and Failure Mechanismscitations
- 2022Effect of Hydrogen and Defects on Deformation and Failure of Austenitic Stainless Steel
- 2021Mesoscale Model for Predicting Hydrogen Damage in Face Centred Cubic Crystalscitations
- 2021Computational Modelling of Microstructural Deformation in Metastable β Titanium Alloys
- 2020Modelling Hydrogen Induced Stress Corrosion Cracking in Austenitic Stainless Steelcitations
- 2020Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: influence of processing parameters and heat treatmentcitations
- 2020Hydrogen effect on plastic deformation and fracture in austenitic stainless steel
- 2020Crystal Plasticity based Study to Understand the Interaction of Hydrogen, Defects and Loading in Austenitic Stainless Steel Single Crystalscitations
- 2019A CPFEM based study to understand the void growth in high strength dual-phase Titanium alloy (Ti-10V-2Fe-3Al)citations
- 2019Representative volume element (RVE) based crystal plasticity study of void growth on phase boundary in titanium alloyscitations
- 2017Three-dimensional in situ observations of compressive damage mechanisms in syntactic foam using X-ray microcomputed tomographycitations
- 2016The effect of specimen size and Surface conditions on the local mechanical properties of 14MoV6 ferritic–pearlitic steelcitations
Places of action
Organizations | Location | People |
---|
article
The effect of specimen size and Surface conditions on the local mechanical properties of 14MoV6 ferritic–pearlitic steel
Abstract
The paper describes multiscale experimental techniques required for determining the mechanical response of a ferritic–pearlitic steel (14MoV6). Accordingly, five different sets of specimens ranging from macro to micro size scales are utilized and whose experimental results have been compared. Digital image correlation is employed to measure deformations on the surface of the test specimens under tensile loading conditions. The influence of the surface conditions on the residual stress distribution was investigated by means of X-ray synchrotron diffraction. In addition, the effects of specimen size, surface conditions and the number of grains in the cross-section of the specimens on mechanical properties are examined. It is observed that key material parameters including the yield stress, tensile strength and elongation to failure are dependent on specimen size. In addition, the results demonstrate that the number of grains in the cross-section of the specimens significantly influence the material response during uniaxial tensile testing. On the other hand, the surface treatment of the micro tensile test specimens bring about reducing differences in mechanical properties between standard and miniature specimens.