People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dijk, N. H. Van
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2014Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loadingcitations
- 2013Multi length scale characterization of austenite in TRIP steels using high-energy X-ray diffractioncitations
- 2013Time-dependent synchrotron X-ray diffraction on the austenite decomposition kinetics in SAE 52100 bearing steel at elevated temperatures under tensile stresscitations
- 2012Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fieldscitations
- 2011Microstructural control of the austenite stability in low-alloyed TRIP steelscitations
- 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fieldscitations
- 2010Real-time martensitic transformation kinetics in maraging steel under high magnetic fieldscitations
- 2008Evolution of ferromagnetic order in URhGe alloyed with Ru, Co and Sicitations
- 2004Critical scattering of polarized neutrons in the invar FE65Ni35 alloy
Places of action
Organizations | Location | People |
---|
article
Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading
Abstract
<p>The stability of individual metastable austenite grains in low-alloyed TRIP steels has been studied during tensile loading using high-energy X-ray diffraction. The carbon concentration, grain volume and grain orientation with respect to the loading direction was monitored for a large number of individual grains in the bulk microstructure. Most austenite grains transform into martensite in a single transformation step once a critical load is reached. The orientation-dependent stability of austenite grains was found to depend on their Schmid factor with respect to the loading direction. Under the applied tensile stress the average Schmid factor decreased from an initial value of 0.44 to 0.41 at 243MPa. The present study reveals the complex interplay of microstructural parameters on the mechanical stability of individual austenite grains, where the largest grains with the lowest carbon content tend to transform first. Under the applied tensile stress the average carbon concentration of the austenite grains increased from an initial value of 0.90 to 1.00 wt% C at 243MPa, while the average grain volume of the austenite grains decreased from an initial value of 19 to 15 μm<sup>3</sup> at 243MPa.</p>