People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Forsey, Alexander
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Creep deformation measurement of ex‐service 12% Cr steel over nonuniform stress fields using digital image correlationcitations
- 2021Stress driven creep deformation and cavitation damage in pure coppercitations
- 2018The influence of temperature on deformation-induced martensitic transformation in 301 stainless steelcitations
- 2018Examining Stress Relaxation in a Dissimilar Metal Weld Subjected to Postweld Heat Treatmentcitations
- 2017Measurement of Creep Deformation across Welds in 316H Stainless Steel Using Digital Image Correlationcitations
- 2016<i>In situ</i> observation of strain and phase transformation in plastically deformed 301 austenitic stainless steelcitations
- 2014A new method for quantifying anisotropic martensitic transformation strains accumulated during constrained coolingcitations
Places of action
Organizations | Location | People |
---|
article
A new method for quantifying anisotropic martensitic transformation strains accumulated during constrained cooling
Abstract
Martensitic phase transformations during welding can play a major role in determining the final residual stresses and they can be anisotropic if the transformation occurs under stress. Traditionally, the Satoh test has been used to quantify the response, but it suffers from the fact that the temperature is not uniform along the specimen length, making it difficult to interpret the data. This shortcoming is overcome in our new experimental method using digital image correlation (DIC) to quantify the temperature dependent evolution of the transformation strain locally both parallel and perpendicular to an applied load, in this case for a high-strength low alloy (HSLA) steel and a tough, low transformation temperature weld consumable designed to mitigate tensile weld residual stresses. The method is able to separate the volumetric component of the transformation strain from the deviatoric transformation plasticity component. The volumetric component is shown to be independent of applied load, while the deviatoric component varies approximately linearly with applied load. For the HSLA steel studied here the method also reveals that the transformation start temperature rises under both tensile and compressive loading, confirming previous work. From a weld modelling viewpoint our method provides sufficient information to include the stress dependency of the anisotropic transformation strain in numerical finite element models of the weld process. © 2014 The Authors.