People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuduzovic, Asmir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Investigations into the delayed fracture susceptibility of 34CrNiMo6 steel, and the opportunities for its application in ultra-high-strength bolts and fasteners
Abstract
The overall effort of the automotive industry to produce lightweight parts has led to a stronger focus on the development of high-strength and ultra-high-strength steels. The susceptibility of such steels to hydrogen embrittlement is often underestimated due to the delay of the damage, which can occur suddenly after a few weeks or even months. The purpose of this work is to investigate the influence of different tempering temperatures on the delayed fracture susceptibility of ultra-high-strength quenched steel. In order to test the hydrogen embrittlement, a device was built in which the notched samples were exposed to constant bending stress with a constant dropping of hydrochloric acid (HCl) and a 0.1 N concentration in the notch. The results demonstrate that tempering at elevated temperatures leads to a lower susceptibility to hydrogen embrittlement. The results of this paper lay the groundwork for the further development of advanced ultra-high-strength steels with an increased resistance to delayed fracture. The application of ultra-high-strength fasteners demonstrates great potential for a new generation of engines with reduced CO2 emissions.