People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bor, Teunis Cornelis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Carbon Nanofibers Grown on Large Woven Cloths: Morphology and Properties of Growthcitations
- 2016Parameter Study for Friction Surface Cladding of AA1050 on AA2024-T351
- 2015Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate
- 2015Thermal and Flow Analysis of Friction Surface Cladding with Varying Clad Layer Thickness
- 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steelscitations
- 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texturecitations
- 2013Cladding of Advanced Al Alloys Employing Friction Stir Weldingcitations
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2010Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wirescitations
- 2008Damage healing in thermoplastic composite plates by employing shape memory alloy wires (on USB stick)
- 2008Ductile or brittle? The impact behaviour of uPVC upon ageing
- 2005Self healing structural components
Places of action
Organizations | Location | People |
---|
article
Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture
Abstract
Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in overall transformation behavior are observed between the two steels. No direction-dependent transformation behavior is present during deformation of the nontextured steel. However, when a strong texture is present, differences in transformation behavior during deformation in different directions can be observed clearly. The ‘stress induced transformation’ theory, in combination with the austenite texture measured before deformation, is used to explain and model the transformation behavior when straining in different directions. The theoretical results of the stress-induced transformation theory compare well with the measured austenitic textures after deformation and the recorded stress vs martensite fraction curves.