People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nunes, Daniela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2023Thermal-Carrier-Escape Mitigation in a Quantum-Dot-In-Perovskite Intermediate Band Solar Cell via Bandgap Engineeringcitations
- 2022Synthesis and characterization of porous TiO2 film decorated with bilayer hematite thin film for effective photocatalytic activitycitations
- 2022Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purificationcitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2022A Comparison between Solution-Based Synthesis Methods of ZrO2 Nanomaterials for Energy Storage Applicationscitations
- 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cellscitations
- 2020Enhanced electrical and photocatalytic properties of porous TiO2 thin films decorated with Fe2O3 nanoparticlescitations
- 2019Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediationcitations
- 2019Mapping the space charge carrier dynamics in plasmon-based perovskite solar cellscitations
- 2018Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cellscitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Compositecitations
- 2018Green Nanotechnology from Waste Carbon-Polyaniline Composite ; Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detectioncitations
- 2017Helium and deuterium irradiation effects in W-Ta composites produced by pulse plasma compactioncitations
- 2017Oxide-Based Solar Cellcitations
- 2016Photocatalytic behavior of TiO2 films synthesized by microwave irradiationcitations
- 2016Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cellscitations
- 2016Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealingcitations
- 2016Smart optically active VO2 nanostructured layers applied in roof-type ceramic tiles for energy efficiencycitations
- 2015TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysiscitations
- 2014Cu2O polyhedral nanowires produced by microwave irradiationcitations
- 2013Structure properties of the YFe11 Mo intermetallic compoundcitations
- 2013Structure Properties of the YFe11Mo Intermetallic Compoundcitations
- 2013Multiscale copper-μdiamond nanostructured composites
- 2012Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanismscitations
- 2012Tungsten-nanodiamond composite powders produced by ball millingcitations
- 2011Microstructure evolution of mechanically alloyed ODS ferritic steels during hot extrusioncitations
- 2011Microstructural characterization of the ODS Eurofer 97 EU-batchcitations
- 2011Microstructures and magnetic domain configurations of NdFe11Ti and Nd2(Fe,Ti)17 aggregatescitations
- 2011Tungsten-microdiamond composites for plasma facing componentscitations
- 2011Production of Cu/diamond composites for first-wall heat sinkscitations
- 2011Copper-micrometer-sized diamond nanostructured compositescitations
- 2011Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilizationcitations
- 2010Consolidation of Cu-nDiamond nanocompositescitations
- 2009Magnetic microstructure of YFe11Ti aggregatescitations
- 2009W-diamond/Cu-diamond nanostructured composites for fusion devices
- 2009Microstructure characterization of ODS-RAFM steels
- 2008Novel approach to plasma facing materials in nuclear fusion reactorscitations
- 2007Plasma-erosion of Cu-nanoDiamond and W-nanoDiamond composites
Places of action
Organizations | Location | People |
---|
article
Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization
Abstract
Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper