People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ferenc, Jarosław
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cyclingcitations
- 2020Influence of W addition on phase constitution, microstructure and magnetic properties of the nanocrystalline Pr<inf>9</inf>Fe<inf>65</inf>WxB<inf>26-x</inf> (Where: x = 2, 4, 6, 8) Alloy Ribbons
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2019Structure, thermal stability and magnetic properties of mechanically alloyed (Fe-Al)-30vol.%B powderscitations
- 2017Thermal characteristics and amorphization in plasma spray deposition of Ni-Si-B-Ag alloy citations
- 2012Directly quenched nanocrystalline (Pr,Dy)-(Fe,Co)-Zr-Ti-B magnetscitations
- 2010The supercooled liquid region span of Fe-based bulk metallic glassescitations
- 2009Correlation between microstructure and temperature dependence of magnetic properties in Fe60 Co18 (Nb,Zr) 6 B15 Cu1 alloy seriescitations
- 2007Mössbauer study on amorphous and nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloyscitations
- 2005Influence of structure on coercivity in nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloyscitations
- 2004Crystallisation behaviour of rapidly quenched cast irons with small amount of boroncitations
Places of action
Organizations | Location | People |
---|
article
Crystallisation behaviour of rapidly quenched cast irons with small amount of boron
Abstract
Amorphous cast irons (with carbon content varying from 12.01 to 15.01 at.\%) containing 1 and 2 wt.\% of boron, were produced by rapid quenching from the melt in the form of ribbons with thickness of 40–75 μm. The crystallisation process of the amorphous alloys was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy (TEM).Very strong influence of boron content on thermal stability and crystallisation process of the alloys studied was observed. The increase of boron content from 1 to 2 wt.\% resulted in the increase of crystallisation onset temperature by about 100 K and in the change of crystallisation mode. The number of crystallisation stages, observed during calorimetric studies at temperatures reaching 1000 K, drops from three to one when boron content increases from 1 to 2 wt.\%. This indicates a change from primary to eutectic mode of decomposition of the amorphous phase, although in both cases similar crystallisation products are formed: α-Fe(Si) and Fe3(C,B). In primary crystallisation mode, dendritic crystals of α-Fe(Si) are formed and in eutectic crystallisation of both phases, small elongated crystallites are observed.