People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Enoch, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Uniform Huygens Metasurfaces with Postfabrication Phase Pattern Recording Functionalitycitations
- 2023Encaved optical fiber nano-probe exciting whispering gallery mode resonance with focused far off-axis beamcitations
- 2022Hilbert fractal inspired dipoles for passive RF shimming in ultra-high field MRIcitations
- 2022Hilbert fractal inspired dipoles for passive RF shimming in ultra-high field MRIcitations
- 2022Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRIcitations
- 2022Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRIcitations
- 2020Bi-anisotropic homogenization of metamaterials
- 2020Bi-anisotropic homogenization of metamaterials ; Homogénéisation bi-anisotrope des métamatériaux
- 2019MRM Probe at 17 Tesla based on High Permittivity Dielectric Resonators
- 2019Two-orders fast multipole analysis of meta-atoms
- 2019Controlling frequency dispersion in electromagnetic invisibility cloakscitations
- 2019Photosensitive chalcogenide metasurfaces supporting bound states in the continuumcitations
- 2017Compressed perovskite aqueous mixtures near their phase transitions show very high permittivities: New prospects for high-field MRI dielectric shimmingcitations
- 2017Measurement and simulation of the polarization-dependent Purcell factor in a microwave fishnet metamaterialcitations
- 2017Measurement and simulation of the polarization-dependent Purcell factor in a microwave fishnet metamaterialcitations
- 2015Direct laser writing of thick metamaterial blocks: Infrared light concentrators
- 2015Direct laser writing of thick metamaterial blocks: Infrared light concentrators
- 2012Enhanced control of light and sound trajectories with three-dimensional gradient index lensescitations
- 2011Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets
- 2009Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonatorscitations
- 2009Acoustic cloaking and mirages with flying carpets
- 2007InGaN green light emitting diodes with deposited nanoparticles
Places of action
Organizations | Location | People |
---|
article
Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRI
Abstract
Purpose The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan.Method We produce a set of two 10x10x1cm3 dielectric pads based on silicon carbide (SiC) powder dispersed in 4-Fluoro 1, 3-dioxalan-2-one (FEC) and polyethylene Glycol (PEG). The stability of the complex permittivity and the invisibility of the pads are characterized experimentally. Numerical simulations are done to evaluate global and local SAR over the head in presence of the pads. B0, B1+ and standard imaging sequences are performed on healthy volunteers.Results SiC pads are compared to state-of-the-art perovskite based dielectric pads with similar dielectric properties (barium titanate). Numerical simulations confirm that head and local SAR are similar. MRI measurements confirm that the pads do not induce susceptibility artefacts and improve B1+ amplitude in the temporal lobe regions by 25% on average.Conclusion We demonstrate the long-term performance and invisibility of these new pads in order to increase the contrast in the brain temporal lobes in a commercial 7 T MRI head coil.