People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Quadbeck, Peter
Offenburg University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Debinding And Sintering Strategies For Fused Filament Fabrication Of Aluminium Alloyscitations
- 2023A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fiberscitations
- 2023A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fiberscitations
- 2022Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*citations
- 2022Gas Analysis and Optimization of Debinding and Sintering Processes for Metallic Binder-Based AM*citations
- 2022A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fiberscitations
- 2022ROXY - An economically viable process to produce oxygen and metals from regolith
- 2021Biocompatibility and Degradation Behavior of Molybdenum in an In Vivo Rat Modelcitations
- 2020Development of a novel biodegradable porous iron-based implant for bone replacementcitations
- 2018Powder metallurgically manufactured cellular metals from carat gold alloys for decorative applicationscitations
- 2013Solubility of Carbon in Nanocrystalline α-Ironcitations
Places of action
Organizations | Location | People |
---|
article
Powder metallurgically manufactured cellular metals from carat gold alloys for decorative applications
Abstract
<jats:p> This paper explores the possibilities of producing visually attractive cellular gold structures via two different powder metallurgical approaches: sintering of loosely packed gold fibers and replication of polymeric templates. In the latter case, two different templates were used: reticulated polyurethane (PU) foam and expanded polystyrene (EPS) spheres which were coated with atomized gold powder. In contrast to the fiber route, replication techniques require an intermediate thermal treatment for the removal of the templates prior to sintering. Typical carat gold alloys lend themselves for supersolidus liquid phase sintering due to a sufficient difference between solidus and liquidus temperature. This approach was applied to all three manufacturing routes and rigid cellular gold structures were obtained successfully in all cases. </jats:p>