People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Esperança, José Manuel Silva Simões
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Multifunctional magnetoelectric sensing and bending actuator response of polymer-based hybrid materials with magnetic ionic liquidscitations
- 2023CO2 hydrates phase behaviour and onset nucleation temperatures in mixtures of H2O and D2Ocitations
- 2022Structural organization of ionic liquids embedded in fluorinated polymerscitations
- 2021Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatingscitations
- 2020Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Responsecitations
- 2020Chitosan polymer electrolytes doped with a dysprosium ionic liquidcitations
- 2020QSPR Modeling of Liquid-liquid Equilibria in Two-phase Systems of Water and Ionic Liquidcitations
- 2019Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuatorscitations
- 2019Ionic-liquid-based printable materials for thermochromic and thermoresistive applicationscitations
- 2018Low-field giant magneto-ionic response in polymer-based nanocompositescitations
- 2017Playing with ionic liquids to uncover novel polymer electrolytescitations
- 2017Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquidscitations
- 2017Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routescitations
- 2017Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytescitations
- 2017A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytescitations
- 2016Imidazolium-based ionic liquid type dependence of the bending response of polymer actuatorscitations
- 2016Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]citations
- 2016Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applicationscitations
- 2015High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride)citations
- 2015Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blendscitations
- 2015Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes propertiescitations
- 2014Generating ionic liquids from ionic solidscitations
- 2014Ionic liquids for solid-state electrolytes and electrosynthesiscitations
- 2013Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N-1 1 1 2(OH)][NTf2] ionic liquid for energy storage applicationscitations
- 2013Thermophysical and magnetic studies of two paramagnetic liquid salts: [C(4)mim][FeCl4] and [P-66614][FeCl4]citations
- 2013Electrochemical applications of electrolytes based on ionic liquidscitations
- 2012Synthesis and electrochemical characterization of aPEO-based polymer electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Structural organization of ionic liquids embedded in fluorinated polymers
Abstract
Hybrid materials based on ionic liquids (ILs) and polymers are increasingly being used for the development of smart and multifunctional materials, allowing to tune polymer properties or introduce new ones. Nonetheless, the structural organization of ILs within the polymer matrix is not properly understood. This work reports on the structural organization of different ILs incorporated into polyvinylidene fluoride (PVDF) films. The effect of IL type ([Pmim][TFSI], [Pmpip][TFSI], [Bmim]2[NiCl4] and [Bmim][FeCl4) incorporated into the PVDF matrix on the structural organization was evaluated and correlated to the observed variations in the morphological and physical-chemical properties. [Bmim][FeCl4] and [Bmim]2[NiCl4] leads to highly porous structures and the incorporation of ILs into the polymer matrix increases the electroactive β phase content of PVDF. Different structural organization of the hybrid materials at nanoscale has been found by small-angle neutron scattering experiments. Whereas just single polydisperse objects with average size of about 5 nm have been found in PVDF/[Pmim][TFSI] and PVDF/[Pmpip][TFSI] samples, more complex fractal-like organization of pores are present in PVDF/[Bmim][FeCl4] and PVDF/[Bmim]2[NiCl4]. Thus, IL type influences both the morphology and the electroactive phase of the polymer. Complex fractal-like organization observed for [Bmim][FeCl4] and [Bmim]2[NiCl4] into the PVDF matrix allows a porous morphology, while single polydispersed particles of [Pmpip][TFSI] or [Pmpip][TFSI] into PVDF favors strong ion-dipole interactions between the IL and the polymer matrix, resulting in higher electroactive β phase contents. ; We thank the Fundação para a Ciência e Tecnologia- FCT, for financial support under the framework of the Strategic Funding UID/FIS/04650/2021, UIDB/50006/2020, UIDP/50006/2020, and LA/P/0008/2020, projects PTDC/FIS-MAC/28157/2017, and PTDC/BTM-MAT/28237/2017 and grants SFRH/BD/145345/2019 (LCF), and SFRH/BPD/121526/2016 (DMC). The authors thank funding by the ...