Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Obot, Ime B.

  • Google
  • 10
  • 10
  • 524

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022Corrosion Inhibition of Rumex vesicarius Mediated Chitosan-AgNPs Composite for C1018 CS in CO2-Saturated 3.5% NaCl Medium under Static and Hydrodynamic Conditions3citations
  • 2022Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solution32citations
  • 2021Date palm leaves extract as a green and sustainable corrosion inhibitor for low carbon steel in 15 wt.% HCl solution20citations
  • 2021Effect of intensifier additives on the performance of butanolic extract of date palm leaves against the corrosion of api 5l x60 carbon steel in 15 wt.% hcl solution18citations
  • 2020Preparation of silver/chitosan nanofluids using selected plant extracts21citations
  • 2020Exploration of natural polymers for use as green corrosion inhibitors for AZ31 magnesium alloy in saline environment111citations
  • 2020Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plants46citations
  • 2019Studies of the anticorrosion property of a newly synthesized Green isoxazolidine for API 5L X60 steel in acid environment35citations
  • 2018Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution80citations
  • 2018Exploration of Dextran for Application as Corrosion Inhibitor for Steel in Strong Acid Environment158citations

Places of action

Chart of shared publication
Umoren, Saviour A.
10 / 40 shared
Nzila, Alexis
2 / 2 shared
Adesina, Akeem Y.
1 / 2 shared
Suleiman, Rami K.
4 / 7 shared
Madhankumar, A.
1 / 2 shared
Sorour, Ahmad A.
2 / 2 shared
Onyeachu, Ikenna B.
1 / 5 shared
Alhaffar, Mouheddin T.
1 / 1 shared
Ali, Shaikh A.
1 / 5 shared
Gerengi, Husnu
1 / 19 shared
Chart of publication period
2022
2021
2020
2019
2018

Co-Authors (by relevance)

  • Umoren, Saviour A.
  • Nzila, Alexis
  • Adesina, Akeem Y.
  • Suleiman, Rami K.
  • Madhankumar, A.
  • Sorour, Ahmad A.
  • Onyeachu, Ikenna B.
  • Alhaffar, Mouheddin T.
  • Ali, Shaikh A.
  • Gerengi, Husnu
OrganizationsLocationPeople

article

Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solution

  • Adesina, Akeem Y.
  • Suleiman, Rami K.
  • Umoren, Saviour A.
  • Obot, Ime B.
Abstract

<p>The present work reports on the corrosion inhibition property of compounds isolated from butanolic extract of Date Palm leaves for low carbon steel in 15% HCl solution. Six compounds were isolated from Date Palm leaves and purified using a combination of column chromatography, thin layer chromatography, and Prep HPLC-MS system. The isolated compounds were characterized using <sup>1</sup>H NMR, <sup>13</sup>C NMR, and GC–MS. Their identity was revealed to be a mixture of fatty alkanes, oleanolic acid (OA), vanillyl alcohol (VA), β-Sitosterol-3-O-β-D-glucoside (β-SSG), sucrose sugar, and carotenoid lutein. As a result of the amount of the different isolates obtained, only three out of the six compounds namely β-SSG, OA, and VA were tested for anticorrosion property for low carbon steel in 15% HCl. The corrosion inhibition of the isolated compounds was performed using weight loss and electrochemical techniques. Surface morphology analysis of the corroded steel in the absence and presence of the isolated compounds was undertaken using SEM/EDAX and 3D optical profilometer. Also, DFT calculations was performed in order to indicate the reactivities and bonding sites of the isolated molecules as well as Monte Carlos simulations (MCS) to determine the energy of interaction between the inhibitors and carbon steel surface. Results obtained show that the values of inhibition efficiency (IE) for the different isolated compounds at the concentration (35 ppm) studied follow the trend: β-SSG (46.57%) &gt; VA<sub>isolated</sub> (39.30%) &gt; VA<sub>commercial</sub> (36.81%) &gt; OA (31.94%) at 25 °C. It is also noted that, for the isolated OA, IE increased with increase in concentration but decreased with increase in temperature. For isolated VA, IE decreased with increase in temperature. However, for the commercial VA, IE slightly increased with rise in temperature. The experimental results are in agreement with the theoretical prediction. In both predicted and experimental results, β-SSG is the best corrosion inhibitor.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • compound
  • Carbon
  • corrosion
  • scanning electron microscopy
  • simulation
  • steel
  • mass spectrometry
  • density functional theory
  • Energy-dispersive X-ray spectroscopy
  • Nuclear Magnetic Resonance spectroscopy
  • alkane
  • gas chromatography
  • alcohol
  • High-performance liquid chromatography