People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Craveiro, Rita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Alginate–Chitosan Membranes for the Encapsulation of Lavender Essential Oil and Development of Biomedical Applications Related to Wound Healingcitations
- 2022Deep eutectic systems for carbonic anhydrase extraction from microalgae biomass to improve carbon dioxide solubilizationcitations
- 2022Selective extraction and stabilization of bioactive compounds from rosemary leaves using a biphasic NADEScitations
- 2021Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systemscitations
- 2021Influence of natural deep eutectic systems in water thermal behavior and their applications in cryopreservationcitations
- 2018Natural deep eutectic systems as alternative nontoxic cryoprotective agentscitations
- 2017Green solvents for enhanced impregnation processes in biomedicinecitations
- 2015Design of controlled release systems for THEDES - Therapeutic deep eutectic solvents, using supercritical fluid technologycitations
- 2015Design of controlled release systems for THEDES - therapeutic deep eutectic solvents, using supercritical fluid technologycitations
Places of action
Organizations | Location | People |
---|
article
Effect of water on the structure and dynamics of choline chloride/glycerol eutectic systems
Abstract
<p>Deep Eutectic Systems (DESs) are an emerging class of green solvents with a myriad of applications, from biotechnology to material science. The high viscosity of most DESs is an obstacle that can be circumvented by the addition of water. But how much water is too much water? There is a need to understand the effect of water in the organizational dynamics of DESs, and to clarify the role of water on the physical properties of the DES, and as a functional additive. In this work, NMR spectroscopy was used to study choline chloride:glycerol (at a 1:2 molar ratio) systems with added water, at water contents ranging from 1 wt% (x<sub>w</sub> = 0.06) to 70 wt% (x<sub>w</sub> = 0.94). We identified three distinct water behaviour domains. Up to a water content of 11 wt%, water does not disrupt the DES structure; in fact, water has a glue-like effect, acting as a bridge between the DES components. Between water contents of 11 wt% and 35 wt%, the solvation of the DES components starts to occur, but the DES nanostructure is still present. At 35 wt% of water, the DES structure is disrupted, and the system transitions to a DES-in-water solution.</p>