People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024In-vitro effects of novel periodontal scalers with a planar ultrasonic piezoelectric transducer on periodontal biofilm removal, dentine surface roughness, and periodontal ligament fibroblasts adhesioncitations
- 2022Comparison of two mesh-moving techniques for finite element simulations of galvanic corrosioncitations
- 2022Characterization and modeling of a planar ultrasonic piezoelectric transducer for periodontal scalerscitations
- 2022Localized Direct Material Removal and Deposition by Nanoscale Field Emission Scanning Probescitations
- 2011Die Sonne Wasser spalten lassen
Places of action
Organizations | Location | People |
---|
article
Localized Direct Material Removal and Deposition by Nanoscale Field Emission Scanning Probes
Abstract
<p>The manufactory of advanced micro- and nanoscale devices relies on capable patterning strategies. Focused electron beams, as for instance implemented since long in electron beam lithography and electron beam induced deposition, are in this regard key enabling tools especially at the early stages of device development and research. We show here that nanoscale field emission scanning probes can be potentially utilized as well for a prospective direct device fabrication by localized material deposition but notably, also by localized material removal. Field emission scanning probe processing was specifically realized on 10 nm chromium and 50 nm gold thin film stacks deposited on a (1 × 1) cm<sup>2</sup> fused silica substrate. Localized material deposition and metal removal was studied in various atmospheres comprising high vacuum, nitrogen, ambient air, naphthalene and carbon-dioxide. Stable and reliable regimes were in particular obtained in a carbonaceous atmosphere. Hence, localized carbon deposits were obtained but also localized metal removal was realized. We demonstrate furthermore that the selected electron emission parameters (20 V - 80 V, 180 pA) and the overall operation environment are crucial aspects that determine the degree of material deposition and removal. Based on our findings, direct tip-based micro- to nanoscale material patterning appears possible. The applied energy regime is also enabling new insights into low energy (< 100 eV) electron interaction. However, the underlying mechanisms must be further elucidated.</p>