Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sun, Kai

  • Google
  • 7
  • 29
  • 293

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022VO 2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications90citations
  • 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substrates40citations
  • 2022VO2metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications90citations
  • 2020Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutions2citations
  • 2012Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications29citations
  • 2012Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous silicon2citations

Places of action

Chart of shared publication
Muskens, Otto L.
2 / 2 shared
Simeoni, Mirko
2 / 2 shared
Urbani, Alessandro
4 / 4 shared
Mengali, Sandro
2 / 2 shared
Xiao, Wei
2 / 3 shared
Kees De Groot, C. H.
1 / 1 shared
Wheeler, Callum
4 / 5 shared
Gaspari, Matteo
2 / 2 shared
Hillier, James A.
2 / 2 shared
Kalfagiannis, Nikolaos
2 / 10 shared
De Groot, Cornelis H.
1 / 1 shared
Ye, Sheng
2 / 4 shared
Zeimpekis, Ioannis
2 / 24 shared
De Groot, Cornelis
1 / 41 shared
Muskens, Otto
2 / 6 shared
Groot, C. H. Kees De
1 / 2 shared
Ebert, Martin
1 / 7 shared
Reynolds, Jamie
1 / 1 shared
De Planque, Maurits
1 / 1 shared
Joshua, Daniel Akrofi
1 / 1 shared
Chong, Harold
2 / 10 shared
Hu, Ruoyu
1 / 1 shared
Gunn, R.
2 / 2 shared
Hakim, M. M. A.
2 / 2 shared
Sultan, S. M.
1 / 1 shared
Masaud, T. B.
1 / 1 shared
Clark, O. D.
1 / 1 shared
Fang, Q.
1 / 5 shared
Ashburn, P.
2 / 13 shared
Chart of publication period
2022
2020
2012

Co-Authors (by relevance)

  • Muskens, Otto L.
  • Simeoni, Mirko
  • Urbani, Alessandro
  • Mengali, Sandro
  • Xiao, Wei
  • Kees De Groot, C. H.
  • Wheeler, Callum
  • Gaspari, Matteo
  • Hillier, James A.
  • Kalfagiannis, Nikolaos
  • De Groot, Cornelis H.
  • Ye, Sheng
  • Zeimpekis, Ioannis
  • De Groot, Cornelis
  • Muskens, Otto
  • Groot, C. H. Kees De
  • Ebert, Martin
  • Reynolds, Jamie
  • De Planque, Maurits
  • Joshua, Daniel Akrofi
  • Chong, Harold
  • Hu, Ruoyu
  • Gunn, R.
  • Hakim, M. M. A.
  • Sultan, S. M.
  • Masaud, T. B.
  • Clark, O. D.
  • Fang, Q.
  • Ashburn, P.
OrganizationsLocationPeople

article

Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutions

  • Ebert, Martin
  • Reynolds, Jamie
  • Sun, Kai
  • De Planque, Maurits
  • Joshua, Daniel Akrofi
  • Chong, Harold
  • Hu, Ruoyu
Abstract

FET biosensors operating in an electrolyte experience a monotonic, temporal and relatively slow change in threshold voltage caused by the hydration of the insulator layer between the electrolyte and the FET's channel. Minimising this temporal change in threshold voltage is critical as, over time, the drain current of n-channel FETs decreases, making it difficult to distinguish between the signal generated in response to analyte - receptor binding events and the background noise generated by the electrolyte and the FET biosensor. While Rapid Thermal Annealing of the insulator layer is known to diminish threshold voltage drift and its negative effects, it is not compatible with a low temperature fabrication process of 200 °C. Our low temperature approach to minimising threshold voltage drift involves depositing a tri-layer insulator stack, consisting of a layer of HfO2 between two Al2O3 layers. Wetting ZnO NWFETs with PBS (10 mM phosphate, 150 mM KCl, pH 7.4) for an hour, showed that ZnO NWFETs with a stack insulator layer experienced a much smaller threshold voltage and drain current drift (100 mV, 0.064 nA) than ZnO NWFETs with a single material insulator layer (≥4300mV, 2.72 nA), Aluminium oxide in this case. Having established the resilience enhancing properties of the stack insulator layer on FETs operating in electrolytes of physiological relevant ionic concentrations; ZnO NWFETs with a stack insulator layer were shown to be capable of detecting the presence of the miDNA-21 strands. This, in effect, paves the way for miRNA sensing experiments in the near future and for exploring the potential of ZnO NWFETs as a diagnostic tool.

Topics
  • impedance spectroscopy
  • experiment
  • aluminum oxide
  • aluminium
  • annealing
  • field-effect transistor method