People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nedeljković, Marija
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Energy consumption of a laboratory jaw crusher during normal and high strength concrete recyclingcitations
- 2023Pre-demolition concrete waste stream identificationcitations
- 2023Non-destructive screening methodology based on handheld XRF for the classification of concretecitations
- 2021Selectief slopen van betonconstructies
- 2021Use of fine recycled concrete aggregates in concretecitations
- 2021Physical, chemical and mineralogical characterization of Dutch fine recycled concrete aggregatescitations
- 2021Multi-level chemical characterization of dutch fine recycled concrete aggregates: a comparative study
- 2021Influence of sand drying and mixing sequence on the performance of mortars with fine recycled concrete aggregatescitations
- 2019Physical Characterization of Dutch Fine Recycled Concrete Aggregates: A Comparative Studycitations
- 2019Carbonation mechanism of alkali-activated fly ash and slag materials: In view of long-term performance predictions
- 2018CO2 binding capacity of alkali-activated fly ash and slag pastescitations
- 2018Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastescitations
- 2018Development and application of an environmentally friendly ductile alkali-activated compositecitations
Places of action
Organizations | Location | People |
---|
article
Energy consumption of a laboratory jaw crusher during normal and high strength concrete recycling
Abstract
<p>This paper presents the measurement and analysis of energy consumption of a laboratory jaw crusher during concrete recycling. A method was developed to estimate the power requirements of a lab-scale jaw crusher. The impact of material properties on the crusher performance is studied. Eight concrete strength classes (C20/25–C80/95) were considered in the approach. Concrete specimens were cured for 28 days; at which time, concrete properties were obtained through tests such as bulk density, compressive strength, tensile strength, rebound number and ultrasonic pulse velocity. The impact of different aperture size (5 mm and 25 mm) on the energy consumption was also studied. From the experimental results, it is demonstrated that there is a strong dependance of energy consumption on the compressive strength of concrete. Energy of crushing for specimens with a 90 MPa compressive strength was four times higher than the energy needed to crush specimens with a 28 MPa compressive strength. Furthermore, the crushing requires three times more energy when the smaller aperture size is used to process concrete specimens. The results of this study can form a basis for a future large-scale field analysis and a detailed determination of the energy and economic efficiency of concrete recycling.</p>