Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sparrow, Graham

  • Google
  • 1
  • 1
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Beneficiation of low-grade, goethite-rich iron ore using microwave-assisted magnetizing roasting39citations

Places of action

Chart of shared publication
Pownceby, Mark
1 / 14 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Pownceby, Mark
OrganizationsLocationPeople

article

Beneficiation of low-grade, goethite-rich iron ore using microwave-assisted magnetizing roasting

  • Pownceby, Mark
  • Sparrow, Graham
Abstract

Microwave-assisted reduction roasting of a goethite-rich, reject iron ore waste stream (−2 mm) was used to produce a high-grade concentrate. Reduction roast experiments were conducted at 370 °C, 450 °C, 600 °C and 1000 °C under gas atmospheres of 30:70 and 40:60 CO/CO2, with a soak time of 20 min. Goethite was converted to hematite above 370 °C under both gas mixtures while at the higher roasting temperatures, increasing amounts of magnetite formed. Roasting conditions for the best conversion of goethite to synthetic magnetite were 600 °C in a gas atmosphere of 40:60 CO/CO2, with a soak time of 20 min. Laboratory-based magnetic separations in a Davis tube indicated that a blast furnace grade (+62 wt% Fe) pellet concentrate could be produced with an acceptable iron recovery of > 88 wt%. Under both gas atmospheres, a higher reduction temperature of 1000 °C achieved a greater conversion of goethite to magnetite but resulted in over-reduction and the generation of wüstite, fayalite and Fe-rich spinel phases with different magnetic susceptibilities that are expected to make subsequent beneficiation difficult. Further processing to optimize the microwave-assisted magnetizing roast and the magnetic separation conditions can be expected to maximize the efficiency of upgrading the iron content in low grade goethite-rich iron ores.

Topics
  • phase
  • experiment
  • iron