People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yurramendi, Lourdes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Bioleaching of metals from secondary materials using glycolipid biosurfactantscitations
- 2020Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trendscitations
- 2019Integrated process for the recovery of yttrium and europium from CRT phosphor wastecitations
- 2019Enhancing rare-earth recovery from lamp phosphor wastecitations
- 2018Rare Earths and the Balance Problem: How to Deal with Changing Markets?citations
- 2018Recovery of rare earths from E-waste residues by an integrated approach
- 2017Integrated flow sheet for the recovery of rare earth from CRTs and lamp phosphor waste
- 2017Recovery of rare earths from e-waste residues for production of high-performance REE-Mg alloys
Places of action
Organizations | Location | People |
---|
article
Bioleaching of metals from secondary materials using glycolipid biosurfactants
Abstract
With the global demand for economically important metals increasing, compounded by the depletion of readily accessible ores, secondary resources and low-grade ores are being targeted to meet growing demands. Novel technologies developed within biobased industries, such as microbial biosurfactants, could be implemented to improve the sustainability of traditional hydrometallurgy techniques. This study investigates newly developed microbial biosurfactants (acidic- and bolaform glycolipids) for the leaching of metals (particularly Cu and Zn) from a suite of mine tailings, metallurgical sludges and automotive shredder residues. Generally, acidic sophorolipids were the most performant, and optimal Cu leaching was observed from a fayalite slag (27%) and a copper sulfide mine tailing (53%). Further investigation of the leached fayalite material showed that leaching was occurring from small metallic Cu droplets in this material via a corrosion-based mechanism, and/or from Cu-Pb sulfides, selective against the dominant Fe-silicate matrix. This study highlights that acidic sophorolipid microbial biosurfactants have the potential to leach Cu and Zn from low-grade secondary materials. It also provides important fundamental insights into biosurfactant-metal and mineral interactions that are currently unexplored. Together, the convergence of leaching and mining industries with bio-industries can improve material recovery and will positively impact the bio- and circular economies and the environment.