Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Ali, Safaa

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Magnetic properties of REE fluorcarbonate minerals and their implications for minerals processing12citations

Places of action

Chart of shared publication
Wall, Frances
1 / 2 shared
Sheridan, Richard
1 / 16 shared
Pascoe, Richard
1 / 1 shared
Pickles, Joe
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Wall, Frances
  • Sheridan, Richard
  • Pascoe, Richard
  • Pickles, Joe
OrganizationsLocationPeople

article

Magnetic properties of REE fluorcarbonate minerals and their implications for minerals processing

  • Al-Ali, Safaa
  • Wall, Frances
  • Sheridan, Richard
  • Pascoe, Richard
  • Pickles, Joe
Abstract

Rare earth elements (REE) are considered as critical metals for electronics and green technology. The REE fluorcarbonates are one of the main REE ore minerals, common in many different types of REE deposit and yet some of their fundamental properties have still not been determined. This study measured the magnetic properties of pure REE fluorcarbonate single crystal minerals using a vibrating sample magnetometer (VSM) and determined their elemental compositions using electron probe microanalysis (EPMA). The results provide the first measurements of the magnetic behaviour and susceptibility of REE fluorcarbonates other than bastnäsite-(Ce). The magnetic susceptibility of REE fluorcarbonates varies systematically from one mineral to another and is highly dependent on the mineral chemistry. It is positive (paramagnetic) for bastnäsite-(Ce) and gradually decreases as the amount of Ca increases in parisite-(Ce), becoming negative (diamagnetic) for the Ca-rich member of the series, röntgenite. Synchysite-(Ce) is difficult to measure, generate good signal and acquire accurate readings because it practically always occurs as <5 mg crystals. Its magnetic susceptibility in samples from a REE ore deposit was experimentally determined by magnetic separation and checked by an associated study using a SQUID magnetometer, synchysite-(Ce) behaved as a diamagnetic mineral. This can be explained by the increase of Ca content and decrease of REE content, in addition to the variations in the layered structure common to the REE fluorcarbonate series minerals. Given the wide range of magnetic susceptibility of REE fluorcarbonates, it is important that the mineralogy is determined carefully before setting up a mineral processing flow sheet.

Topics
  • impedance spectroscopy
  • mineral
  • single crystal
  • layered
  • susceptibility
  • rare earth metal
  • electron probe micro analysis