People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Coleman, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Productive use of steelmaking by-product in environmental applications - II
Abstract
<p>Detailed laboratory studies have indicated that the HIsmelt steelmaking by-product has the ability to neutralise acidity and hence, may have potential application as an environmental amendment. Prior to widespread environmental use, however, an ecotoxicological characterisation of the by-product leachate and an environmental radioactivity risk assessment are required. Ecotoxicity testing indicated that the HIsmelt steelmaking by-product softwater leachate, adjusted from its natural pH of 10.6-8.0 prior to use, was of low toxicity to Chlorella algae and the marine bacterium Vibrio fischeri, and not toxic to the cladoceran Ceriodaphnia dubia. Leachate metal concentrations in HIsmelt by-product were low. Relative to stringent health-based guidelines for Australian drinking water, the HIsmelt softwater leachate only exceeds the pH guideline of 6.5-8.5. The acidic toxicity characteristic leaching procedure (TCLP) HIsmelt leachate compares favourably with TCLP leachates from international steel-making by-products with low trace element concentrations reflecting low solid-phase concentrations. The HIsmelt steelmaking by-product exhibited low to moderate U and Th decay chain radionuclide activities with an absorbed dose rate of 65 nGy/h. Given the low ecotoxicity, low leachate trace elements concentrations and acceptable radioactivity, the HIsmelt steelmaking by-product has potential applications as a construction material or as a soil amendment to ameliorate acidity. However, based on the results of the synthetic softwater leachate tests, it is likely that the HIsmelt steelmaking by-product will require mixing with other materials to reduce leachate pH prior to use as an environmental amendment.</p>