People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Munk-Nielsen, Stig
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Thermal cycling characterization of an integrated low-inductance GaN eHEMT power module
- 2024Thermal cycling characterization of an integrated low-inductance GaN eHEMT power module
- 2023Thermal Characteristics of Liquid Metal Interconnects for Power Semiconductorscitations
- 2023Thermal Characteristics of Liquid Metal Interconnects for Power Semiconductorscitations
- 2021Performance evaluation of lithium-ion batteries (LiFePO 4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysiscitations
- 2021Performance evaluation of lithium-ion batteries (LiFePO4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysiscitations
- 2020Parametric transformer using PM-inductors with saturation-gapcitations
- 2018Frequency domain scanning acoustic microscopy for power electronics:Physics-based feature identification and selectivitycitations
- 2018Frequency domain scanning acoustic microscopy for power electronicscitations
- 2017Short-Circuit Degradation of 10-kV 10-A SiC MOSFETcitations
- 2015Ageing monitoring in IGBT module under sinusoidal loadingcitations
- 2014A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting systemcitations
- 2014A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting systemcitations
- 2014A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generatorcitations
- 2014A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generatorcitations
- 2013An electromechanical model for a dielectric electroactive polymer generatorcitations
- 2013An Electromechanical Model of a Dielectric ElectroActive Polymer Generatorcitations
- 2013An Electromechanical Model of a Dielectric ElectroActive Polymer Generatorcitations
- 2012Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generatorscitations
- 2012Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generatorscitations
Places of action
Organizations | Location | People |
---|
article
Frequency domain scanning acoustic microscopy for power electronics
Abstract
In the evaluation of power electronic components non-destructive test methods (NDT) such as scanning acoustic microscopy (SAM) are valuable tools in packaging and failure analysis. As power modules become more compact and power devices thinner, echo overlap and interference can hamper the imaging capability and analysis of the conventional SAM time domain-based imaging techniques. Frequency domain analysis offers increased resolution and contrast but the interpretation and feature identification of waveforms is less obvious and interpretation guidelines have received little attention. In this paper a physics-based analysis of the frequency domain response is presented in a power module case study. The analysis is used to demonstrate physics-based feature selective contrast in such systems and offers guidelines for feature prediction. The approach is verified on full scan datasets from acoustic scans of a hybrid multilayer stack. Distinct features in the echo frequency domain are identified as resonances associated with multiple internal reflections in the layer structure. Where such features may hamper analysis in the conventional approach these can, if properly assigned, be exploited to yield selective and improved contrasts and allow accurate structural and material analysis.