People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mannan, Samjid Hassan
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2020High bond strength Cu joints fabricated by rapid and pressureless in situ reduction-sintering of Cu nanoparticlescitations
- 2019Influence of Zn concentration on interfacial intermetallics during liquid and solid state reaction of hypo and hypereutectic Sn-Zn solder alloyscitations
- 2019Arresting High-Temperature Microstructural Evolution inside Sintered Silvercitations
- 2017Review of silver nanoparticle based die attach materials for high power/temperature applicationscitations
- 2016Microstructural evolution of sintered silver at elevated temperaturescitations
- 2016Reactions in electrodeposited Cu/Sn and Cu/Ni/Sn nanoscale multilayers for interconnectscitations
- 2016Thermally stable high temperature die attach solutioncitations
- 2015Electromigration Phenomena in Sintered Nanoparticle Ag Systems Under High Current Density
- 2015Factors influencing microstructural evolution in nanoparticle sintered Ag die attachcitations
- 2014A review: On the development of low melting temperature Pb-free solderscitations
- 2013Electronics Assembly and High Temperature Reliability Using Sn-3.8Ag-0.7Cu Solder Paste With Zn Additivescitations
- 2012Disabling of Nanoparticle Effects at Increased Temperature in Nanocomposite Solderscitations
- 2012Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reactioncitations
- 2012Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni-P substratescitations
- 2010Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates citations
- 2009Cross-Section Preparation for Solder Joints and MEMS Device Using Argon Ion Beam Millingcitations
- 2008Interfacial reaction between molten Sn-Bi based solders and electroless Ni-P coatings for liquid solder interconnectscitations
- 2007Dissolution and interfacial reaction of Nb in contact with the molten 521n-48Sn soldercitations
- 2007Failure mechanisms of dummy IGBT assembles constructed using liquid In-Sn/Nb system
- 2006Interfacial reactions between molten Sn-Bi-X solders and Cu substrates for liquid solder interconnectscitations
- 2006Lifetime of solid metals in contact with liquid solders for high-temperature liquid solder assembliescitations
- 2006Edge effects in intermetallic compound crystal growth between Nb and molten 52In-48Sn solder
- 2005Study of intermetallic crystal growth between Nb and molten 52In-48Sn soldercitations
- 2004Materials and processes for implementing high-temperature liquid interconnectscitations
- 2004Dissolution of solids in contact with liquid soldercitations
- 2002Electroless nickel bumping of aluminum bondpads - Part II: Electroless nickel platingcitations
- 2000Solder paste reflow modeling for flip chip assembly
- 2000Investigation of a solder bumping technique for flip-chip interconnection
- 2000Under bump metallisation of fine pitch flip-chip using electroless nickel depositioncitations
Places of action
Organizations | Location | People |
---|
article
Review of silver nanoparticle based die attach materials for high power/temperature applications
Abstract
There has been a significant rise in the number of research papers on silver nanoparticle based solutions for harsh environment die attach. However, sintering nanoparticles is a complex process, affected by many different factors, such as the sintering temperature profile, particle size, sintering pressure, sintering environment, and organic compounds inside the nanoparticle paste used for stabilisation of the particles and easier processing. Therefore, numerous routes exist for establishment of sintered structures, and each lab has selected their own techniques and criteria for sintering silver nanoparticles. This has resulted in formation of a significant amount of knowledge and data in this field, but without appropriate correlation between utilised parameters. In this review data has been collected from a wide range of researchers in the field and an attempt made to correlate the results. By finding connections between the datasets, we present a broad and general understanding of the sintering processes to help researchers produce desired sintered structures. The collected data and investigated parameters include sintering pressure, metallisation, effect of thermal aging and cycling, highest sintering temperature, and particle size distributions. Some particularly interesting innovations in the field to address the shortcomings of sintering silver joints are investigated and some insights on sintering process are also provided, such as the understanding that higher sintering pressure causing improved strength might potentially reduce the long term thermal resistance of the die attach.