Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adli, Ali Rezaie

  • Google
  • 1
  • 1
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Numerical investigation and experimental validation of residual stresses building up in microelectronics packaging20citations

Places of action

Chart of shared publication
Jansen, Kaspar
1 / 48 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Jansen, Kaspar
OrganizationsLocationPeople

article

Numerical investigation and experimental validation of residual stresses building up in microelectronics packaging

  • Adli, Ali Rezaie
  • Jansen, Kaspar
Abstract

This paper comprises the numerical approach and the experimental validation technique developed to obtain the residual stresses building up during encapsulation process of integrated circuits. Residual stresses can be divided<br/>into cure and cooling induced parts. The curing originated stress had beenmostly neglected in the literature and a special attention had always been given to detection of the thermal induced stress. In this study, both of the residual<br/>stresses, evolving during packaging, were investigated independently. The material behavior of the epoxy molding compound, EMC, was determined by the series of characterization experiments. The volumetric behavior of the EMC was investigated using PVT analysis, in which the total cure shrinkage of an initially uncured sample and the coefficient of thermal expansion of the same sample after full conversion were determined. The cure kinetics was studied using differential scanning calorimetry, DSC. The dynamic mechanical behavior<br/>was examined by dynamic mechanical analysis,DMA, at a fixed frequency. Besides, the time dependent behavior of the EMC was also determined by implementing the time–temperature superposition, TTS, test set-up inDMA.<br/>The shift factor was modeled using the combination of the WLF equation and the polynomial of second degree. The constitutive equationswere developed based on the applied boundary conditions and the epoxy compound's<br/>mechanical behavior in the respective stage. A two dimensional numerical model was constructed using a commercially available finite element software package. For the experimental verification of the numerically obtained residual stresses a flexible board with the stress measuring chip was encapsulated. The real-time stress data were measured during the encapsulation. Using this technique, the in-plane stresses and the temperature changes during the die encapsulation were measured successfully. Furthermore, the measured stress data was compared with the predicted numerical results of the cure and the thermal stages, independently.

Topics
  • compound
  • experiment
  • thermal expansion
  • differential scanning calorimetry
  • curing
  • dynamic mechanical analysis