Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bose, I.

  • Google
  • 1
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags10citations

Places of action

Chart of shared publication
Borner, K.
1 / 1 shared
Bock, Karlheinz
1 / 43 shared
Tetzner, K.
1 / 3 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Borner, K.
  • Bock, Karlheinz
  • Tetzner, K.
OrganizationsLocationPeople

article

Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tags

  • Borner, K.
  • Bose, I.
  • Bock, Karlheinz
  • Tetzner, K.
Abstract

<p>We report on long-term air-stable organic rectifying diodes (ORD) on flexible substrates based on a solution deposited amorphous organic semiconductor (OSC) material, consisting of a co-polymer of arylamine and a fused aromatic species, reaching charge-carrier mobilities of μ = 0.05 cm<sup>2</sup>/V s (space charge limited current region) and current densities of up to 100 A/cm<sup>2</sup> at 10 V levels with rectification ratios of 10<sup>4</sup> operating in the 10 kHz range. The ORDs exhibit a high degree of air-stability without any passivation with extremely reliable reproducibility. ORDs were fabricated on polyethylene naphthalate foils in a vertical sandwich structure with gold and aluminium as the injecting and blocking electrodes respectively via evaporation with the OSC spin-coated in between (Type1). In order to improve device performance of the ORDs, poly(ethylenedioxythiophene):poly(styrenesulfonate) was μ-dispensed as a hole-injection layer (Type2). The results for Type1-diodes show a really narrow spread of the diode characteristics, whereas for Type2 diodes the spread is slightly more but still acceptable. These ORDs prove themselves better than conventional pentacene diodes both in terms of reliability/repeatability of the diode performance and air-stability without an encapsulation layer, and goes towards the enabling of a viable and reliable low-cost fabrication method of radio frequency identification-tags using organic semiconductors.</p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • amorphous
  • aluminium
  • semiconductor
  • gold
  • current density
  • evaporation
  • optical rotatory dispersion