Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Howes, Philip D.

  • Google
  • 1
  • 2
  • 402

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014A review: On the development of low melting temperature Pb-free solders402citations

Places of action

Chart of shared publication
Kotadia, Hiren R.
1 / 8 shared
Mannan, Samjid Hassan
1 / 29 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Kotadia, Hiren R.
  • Mannan, Samjid Hassan
OrganizationsLocationPeople

article

A review: On the development of low melting temperature Pb-free solders

  • Kotadia, Hiren R.
  • Mannan, Samjid Hassan
  • Howes, Philip D.
Abstract

<p>Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SAC105 and SAC305. Although this poses a great challenge to researchers around the world, significant progress is being made in developing new solder alloys with promising properties. In this review, we discuss fundamental research activity and its focus on the solidification and interfacial reactions of Sn-based solder systems. We first explain the reactions between common base materials, coatings, and metallisatons, and then proceed to more complex systems with additional alloying elements. We also discuss the continued improvement of substrate resistance to attack from molten Sn which will help maintain the interface stability of interconnections. Finally, we discuss the various studies which have looked at employing nanoparticles as solder additives, and the future prospects of this field.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • interfacial
  • solidification
  • melting temperature