People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amalu, Dr Emeka
Teesside University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Mineral wastescitations
- 2024Effect of Creep, Fatigue and Random Vibration on the Integrity of Solder Joints in BGA Packagecitations
- 2024Critical methods of geopolymer feedstocks activation for suitable industrial applicationscitations
- 2024Critical solder joint in insulated gate bipolar transistors (IGBT) power module for improved mechanical reliabilitycitations
- 2023Characterising Solder Materials from Random Vibration Response of Their Interconnects in BGA Packagingcitations
- 2023Effects of Reflow Profile and Miniaturisation on the Integrity of Solder Joints in Surface Mount Chip Resistorscitations
- 2021Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositionscitations
- 2020Comparing and benchmarking fatigue behaviours of various SAC solders under thermo-mechanical loadingcitations
- 2019Creep damage of BGA solder interconnects subjected to thermal cycling and isothermal ageingcitations
- 20193D printing of intricate sand cores for complex copper castings
- 2018Effect of Temperature on Conductivity of PLA-Carbon 3D Printed Components.
- 2016Effects of component stand-off height on reliability of solder joints in assembled electronic component
- 2015Effect of intermetallic compounds on thermo-mechanical reliability of lead-free solder joints in solar cell assembly
- 2015A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assemblycitations
- 2012High-temperature fatigue life of flip chip lead-free solder joints at varying component stand-off heightcitations
- 2012High temperature reliability of lead-free solder joints in a flip chip assemblycitations
- 2012Thermal management materials for electronic control unitcitations
- 2012Prediction of damage and fatigue life of high-temperature flip chip assembly interconnections at operationscitations
- 2011Effect of solder joint integrity on the thermal performance of a TEC for a 980nm pump laser module
Places of action
Organizations | Location | People |
---|
article
Prediction of damage and fatigue life of high-temperature flip chip assembly interconnections at operations
Abstract
The determination of the real value of damage/plastic work density in solder joints from computer numerical modelling and its usage in fatigue life prediction models based on accumulated energy density is critical to improving the accuracy of predicted life of solder joints. Commercial ANSYS software based on three-dimensional finite element analysis (FEA) was employed to investigate damage of bonded materials of lead-free solder joints in a flip chip (FC48D6.3C457) mounted on a printed circuit board (PCB). The trend behaviour of accumulated damage and fatigue life per cycle over many accelerated thermal cycles (ATCs) are also studied. The solder bumps deformation is modelled using ANAND’s visco-plasticity and the performances of all other materials in the assembly were captured with appropriate material models. It was observed that the difference in stress magnitude and amplitude between inter-metallic compounds (IMCs) at the die side and solder bulk was highest and the presence of IMC in the joints increases bump damage which occurs in three stages during temperature cycle loading. These results demonstrate that while IMC impacts solder joint reliability, the bond at interconnect between IMC at the die side and solder bulk is most vulnerable to fatigue crack initiation and propagation. A new methodology to find accurate solder joint damage is presented. The findings show that average damage from cycle of hysteresis loop stabilisation to cycle of onset of tertiary damage demonstrates potential of being adequate in determining magnitude of the solder joint damage. However, considering that damage evolution is in three-phase, we propose the use of polynomial function to estimate plastic work damage in FC solder joints.