People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chlanda, Adrian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024A novel approach to enhance mechanical properties of Ti substrates for biomedical applicationscitations
- 2021Investigation into morphological and electromechanical surface properties of reduced-graphene-oxide-loaded composite fibers for bone tissue engineering applications: A comprehensive nanoscale study using atomic force microscopy approachcitations
- 2020Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rollingcitations
- 2020The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCLcitations
- 2020Internal nanocrystalline structure and stiffness alterations of electrospun polycaprolactone-based mats after six months of in vitro degradation. An atomic force microscopy assaycitations
- 2020The effect of introduction of filament shift on degradation behaviour of PLGA- and PLCL-based scaffolds fabricated via additive manufacturingcitations
- 2018Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopycitations
- 2018The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopycitations
- 2018Nanobead-on-string composites for tendon tissue engineeringcitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2018Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological applicationcitations
- 2017Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ionscitations
- 2016.; Influence of biodegradable polymer coatings on corrosion, cytocompatibility and cell functionality of Mg-2.0Zn-0.98Mn magnesium alloycitations
- 2015Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics Atomic Force Microscopy using etched scanning probescitations
- 2013Three dimensional hybrid scaffolds for bone tissue engineering
Places of action
Organizations | Location | People |
---|
article
Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application
Abstract
NiTi shape memory alloys are characterized by relatively good biocompatibility primarily thanks to their ability to self-passivate. However, before they can be used as medical implants for long term use, they need to undergo treatment aimed at producing layers on their surface that are superior to spontaneously formed oxide layers and that would increase their resistance to corrosion, limit nickel ion release from the surface (metallosis) and have the capability to shape their biological properties depending on the application. Furthermore, cardiac implants require addressing the issue of blood clotting on the surface. Treatment in glow-discharge low temperaturę plasma makes it possible to produce titanium layers with a structure and properties that are controlled via process parameters. In addition, antithrombogenic properties can be improved by depositing a carbon coating via the RFCVD process. The aim of the study was to investigate the structure, Surface topography, adhesive properties, wettability, surface free energy and evaluate metallosis after producing TiO2 and a-C:N:H+TiO2 composite layers on NiTi alloy. The capabilities of AFM microscopes in studying the adhesive properties of a surface were also highlighted in the study. The study shows that the produced surface layers are capable of significantly reducing metallosis. Furthermore, in contrast to NiTi in its initial state, layers of nanocrystalline TiO2 titanium oxide (rutile) with a homogeneous structure demonstrate greater adhesion strength and more developed surface in the microscale, which facilitates the formation of an a-C:N:H coating. Therefore the formation of a coating of a-C:N:H amorphous carbon on NiTi alloy that has previously been oxidised in lowtemperature plasma may prove to be a favourable solution in terms of using NiTi alloy to produce cardiac implants.