People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rożniatowski, Krzysztof
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Comparison Study of PVD Coatings: TiN/AlTiN, TiN and TiAlSiN Used in Wood Machiningcitations
- 2022Mechanical Behavior of Nitrocarburised Austenitic Steel Coated with N-DLC by Means of DC and Pulsed Glow Dischargecitations
- 2021Improving the Properties of Composite Titanium Nitride Layers on the AZ91D Magnesium Alloy Using Hydrothermal Treatmentcitations
- 2020Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditionscitations
- 2020CORROSION RESISTANCE OF NITROGEN-DOPED DLC COATINGS PRODUCED IN GLOW DISCHARGE CONDITIONS ON NITRIDED AUSTENITIC STEELcitations
- 2018The Influence of Selective Laser Melting (SLM) Process Parameters on In-Vitro Cell Responsecitations
- 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)citations
- 2017The effect of current types on the microstructure and corrosion properties of Ni/NANOAl2O3 composite coatings
- 2016Influence of Nitrided Layer on the Properties of Carbon Coatings Produced on X105CrMo17 Steel Under DC Glow-Discharge Conditionscitations
- 2016Synthesis and structural study of a self-organized MnTiO3-TiO2 eutecticcitations
- 2015Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics Atomic Force Microscopy using etched scanning probescitations
- 2009Description of the homogeneity of material microstructures: using computer-aided analysiscitations
- 2008PrAlO3−PrAl11O18 Eutectic: Its Microstructure and Spectroscopic Propertiescitations
- 2006Self-Organized, Rodlike, Micrometer-Scale Microstructure of Tb3Sc2Al3O12−TbScO3:Pr Eutecticcitations
- 2001Free surface contribution to sensitization of an austenitic stainless steelcitations
Places of action
Organizations | Location | People |
---|
article
Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics Atomic Force Microscopy using etched scanning probes
Abstract
Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electros pun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. (C) 2015 Elsevier Ltd. All rights reserved.