People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Denayer, Joeri
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Techno-economic Analysis of Vacuum Pressure Swing Adsorption Process for a Sustainable Upgrading of Biogascitations
- 2024Structure I methane hydrate confined in C8-grafted SBA-15citations
- 2023An Efficient Implementation of Maxwell-Stefan Theory for Modeling Gas Separation Processes
- 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Devicecitations
- 2021Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications
- 2020Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorptioncitations
- 2019Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separationscitations
- 2019Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Framework
- 2017Gel-based morphological design of zirconium metal-organic frameworkscitations
- 20173D-printed structured adsorbents for molecular separation
- 2016The effect of crystal diversity of nanoporous materials on mass transfer studies
- 2015The role of crystal diversity in understanding mass transfer in nanoporous materialscitations
- 2015Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillerscitations
- 2013Electrochemical synthesis of metal-organic framework based microseparators
- 2013High pressure, high temperature synthesis of metal-organic frameworks
- 2013New VIV-based metal-organic framework having framework flexibility and high CO2 adsorption capacitycitations
- 2004Adsorption of Polypropylene and Polyethylene on Liquid Chromatographic Column Packingscitations
Places of action
Organizations | Location | People |
---|
article
Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption
Abstract
The formulation of metal-organic frameworks (MOFs) materials into resistant structures is a key step towards their use in adsorptive separation processes. In this study, ZIF-8 crystals have been formulated into resistant pellets with various binders by a simple extrusion-crushing-sieving (ECS) approach. 55 recipes were evaluated with a series of stability tests - mechanical stability upon friction, acid/base stability, hydrothermal stability and long-term stability for storage over several years - as well as with a set of adsorption and separation experiments. The stability tests have highlighted that PVF (polyvinylformal) is the most promising binder to generate resistant pellets with ZIF-8 crystals for the adsorptive recovery of n-butanol in the acetone-butanol-ethanol (ABE) fermentation process, while other binders, including methylcellulose, may find their use in gas/vapor adsorption processes. Adsorption of ethanol vapor has shown that the formulation results into a decrease of adsorption capacity, which is proportional to the binder fraction, while having no effect on the adsorption kinetics. On the other hand, packed bed experiments in liquid phase have indicated that ZIF-8 composite materials maintain the separation ability of the unformulated ZIF-8, but also that the binder results into an unfavorable additional mass transfer resistance. These results have been supported by complementary porosimetry measurements with Ar and Hg, indicating that the composite materials are very porous with narrow pore-size distributions. From this experimental work, various formulation recipes have been identified, which may lead to resistant MOF composite materials for adsorptive separations.