Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huber, Lukas

  • Google
  • 3
  • 24
  • 189

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study30citations
  • 2018Controlling the surface structure of electrospun fibers: effect on endothelial cells and blood coagulation7citations
  • 2015Strong, thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin152citations

Places of action

Chart of shared publication
Beltran, Mario A.
1 / 1 shared
Griffa, Michele
1 / 8 shared
Iswar, Subramaniam
1 / 2 shared
Kaufmann, Rolf
1 / 1 shared
Koebel, Matthias M.
2 / 21 shared
Brunner, Samuel
2 / 8 shared
Lattuada, Marco
1 / 10 shared
Malfait, Wim J.
2 / 31 shared
Schneider, René
1 / 4 shared
Fortunato, Giuseppino
1 / 22 shared
Brunelli, Marzia
1 / 2 shared
Müller, Eike
1 / 4 shared
Maniura-Weber, Katharina
1 / 17 shared
Rossi, René M.
1 / 18 shared
Mertgen, Anne-Sophie
1 / 1 shared
Yazgan, Gökçe
1 / 2 shared
Guex, Anne Géraldine
1 / 4 shared
Rottmar, Markus
1 / 12 shared
Zhang, Yucheng
1 / 14 shared
Zhao, Shanyu
1 / 26 shared
Tingaut, Philippe
1 / 14 shared
Demilecamps, Arnaud
1 / 10 shared
Budtova, Tatiana
1 / 42 shared
Rigacci, Arnaud
1 / 26 shared
Chart of publication period
2019
2018
2015

Co-Authors (by relevance)

  • Beltran, Mario A.
  • Griffa, Michele
  • Iswar, Subramaniam
  • Kaufmann, Rolf
  • Koebel, Matthias M.
  • Brunner, Samuel
  • Lattuada, Marco
  • Malfait, Wim J.
  • Schneider, René
  • Fortunato, Giuseppino
  • Brunelli, Marzia
  • Müller, Eike
  • Maniura-Weber, Katharina
  • Rossi, René M.
  • Mertgen, Anne-Sophie
  • Yazgan, Gökçe
  • Guex, Anne Géraldine
  • Rottmar, Markus
  • Zhang, Yucheng
  • Zhao, Shanyu
  • Tingaut, Philippe
  • Demilecamps, Arnaud
  • Budtova, Tatiana
  • Rigacci, Arnaud
OrganizationsLocationPeople

article

Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study

  • Beltran, Mario A.
  • Griffa, Michele
  • Iswar, Subramaniam
  • Kaufmann, Rolf
  • Koebel, Matthias M.
  • Brunner, Samuel
  • Lattuada, Marco
  • Malfait, Wim J.
  • Huber, Lukas
Abstract

ilica aerogels display an ultra-low thermal conductivity (λ) and are used as thermal superinsulators. Here, we study the influence of aging and drying processes on the microstructure and thermal conductivity of fiber-reinforced silica aerogel composites. Glass wool-silica gel composites were aged for variable times, hydrophobized, and dried either at ambient pressure or from supercritical CO2 (scCO2). The X-ray micro-tomographic data display three distinct phases: silica aerogel, glass fibers, and macroscopic pores and cracks. The silica aerogel appears as a continuous medium in the tomograms because the spatial resolution (6–11 μm) is insufficient to resolve the aerogel mesopores (∼0.02–0.10 μm). For the composites prepared by ambient pressure drying, insufficient aging led to prominent drying shrinkage and cracking, and a high macro-porosity, as quantified by 3D image analysis. Insufficient aging also led to an increase in λ from 15.7 to 21.5 mW m−1 K−1. On the contrary, composites that were nearly free of cracks and displayed a constant λ of 16.3 ± 0.8 mW m−1 K−1 could be prepared by scCO2, independent of aging time. The thermal conductivity was reproduced from the macro-porosity to within 0.7 mW m−1 K−1 using simple thermal transport models consisting of thermal elements connected in series or parallel. Our results illustrate the usefulness of X-ray micro-tomography to quantify the 3D microstructure and its effects on the bulk composite properties and the data highlight the importance of aging for the production of low λ aerogel-fiber composites by ambient pressure drying.

Topics
  • impedance spectroscopy
  • pore
  • phase
  • tomography
  • glass
  • glass
  • crack
  • composite
  • aging
  • porosity
  • thermal conductivity
  • drying
  • aging