People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parlett, Cma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Use of copper carbonate as corrosion inhibitor for carbon steel in post combustion carbon capturecitations
- 2021Atom efficient PtCu bimetallic catalysts and ultra dilute alloys for the selective hydrogenation of furfuralcitations
- 2019Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Labilitycitations
- 2019Platinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acid
- 2018Delaminated CoAl‐Layered Double Hydroxide@TiO₂ Heterojunction Nanocomposites for Photocatalytic Reduction of CO₂
- 2018NMR cryoporometric measurements of porous silicacitations
- 2018Platinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acidcitations
- 2018Tunable silver-functionalized porous frameworks for antibacterial applicationscitations
- 2017Tunable Ag@SiO2 core–shell nanocomposites for broad spectrum antibacterial applicationscitations
- 2017P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reductioncitations
- 2017High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterificationcitations
Places of action
Organizations | Location | People |
---|
article
NMR cryoporometric measurements of porous silica
Abstract
Nuclear magnetic resonance (NMR) cryoporometry is a non-invasive method for determining the pore size distributions of materials such as porous silica. Cryoporometry has several advantages over other porometric techniques. It is able to measure the melting process in a series of discrete steps, whereas transient heat flow techniques, such as differential scanning calorimetry (DSC), have a minimum rate of measurement, and, secondly, NMR cryoporometry can analyze pore shapes with any geometry, where nitrogen porosimetry is complicated for samples with spherical pores with narrow necks. However, one key drawback of the method is that, for any one liquid observed in any one material, there is a lack of consensus in the two parameters, kckc andView the MathML source2sl , used to convert experimental NMR melting point depression data into a pore size distribution. By considering two decades worth of literature data, values for both were obtained for water in porous silica supports, in particular an estimate of a non-freezing layer between the solid ice and the inner surface of the pore. These values were used to produce pore size distributions for three silica materials, SBA-15 and KIT-6, both with cylindrical pores but possessing different structures, and SBA-16, which has spherical pores. This represents the first time KIT-6 has been characterized by the NMR method. Furthermore, this work demonstrates a general method for obtaining values for kckc and View the MathML source2sl which can be applied to any liquid for which suitable literature data is available.