People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burrows, Andrew D.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Vanillin cross-linked chitosan film with controlled release of green tea polyphenols for active food packagingcitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2021Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporositycitations
- 2019Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysiscitations
- 2018Polymer of intrinsic microporosity (PIM-7) coating affects triphasic palladium electrocatalysiscitations
- 2017Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applicationscitations
- 2017AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1citations
- 2015Manufacturing of metal-organic framework monoliths and their application in CO 2 adsorptioncitations
- 2015PIM-MOF Composites for Use in Hybrid Hydrogen Storage Tanks
- 2015Manufacturing of metal-organic framework monoliths and their application in CO2 adsorptioncitations
- 2015The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acidcitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2008Subtle structural variation in copper metal-organic frameworks: Syntheses, structures, magnetic properties and catalytic behaviourcitations
- 2006Incorporation of dyes into hydrogen-bond networks: The structures and properties of guanidinium sulfonate derivatives containing ethyl orange and 4-aminoazobenzene-4 '-sulfonate
- 2003The influence of functional group orientation on the structure of zinc 1,1,4-trimethylthiosemicarbazide dicarboxylates: Probing the limits of crystal engineering strategies
Places of action
Organizations | Location | People |
---|
article
Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption
Abstract
<p>An important class of novel mesoporous and microporous adsorbents like metal-organic frameworks (MOFs) are normally produced in powder form. This paper presents a generic method of manufacturing and characterisation of these materials into low pressure drop and energy saving monolithic structures for industrial applications. One of the MOF candidates that was considered in this study was MIL-101 (Cr) ([Cr<sub>3</sub>O(OH)(H<sub>2</sub>O)<sub>2</sub>(bdc)<sub>3</sub>].xH<sub>2</sub>; bdc = 1,4-benzenedicarboxylate), and the model contaminant gas tested was carbon dioxide (CO<sub>2</sub>). MIL-101 (Cr) monoliths were manufactured by paste extrusion techniques from the synthesized MIL-101 (Cr) powder. These MIL-101 (Cr) monoliths were then characterised using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), radial compression tests and intelligent gravimetric analysis (IGA). Adsorption properties of the prepared MIL-101 (Cr) powder and monoliths were determined from their pure CO<sub>2</sub> sorption isotherms and dynamic adsorption breakthrough curves, that were carried out using high concentration (40% v/v) CO<sub>2</sub> challenge. Results have demonstrated that the resulting MIL-101 (Cr) monoliths were highly porous, mechanically strong on compressive loading, thermally regenerable with comparable CO<sub>2</sub> adsorption capacity to the synthesized MIL-101 (Cr) powder. From breakthrough curves, mass transfer characteristics such as mass transfer zone velocity and length of the prepared MIL-101 (Cr) monoliths have also been evaluated in this study.</p>