Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malla, Pravanjan

  • Google
  • 3
  • 6
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Magnetic metal-organic frameworks as sensitive aptasensors for coronavirus spike protein2citations
  • 2023Synthesis and characterization of Au-decorated graphene oxide nanocomposite for magneto-electrochemical detection of SARS-CoV-2 nucleocapsid gene13citations
  • 2023Magnetic graphene oxide nanocomposite as dual-mode genosensor for ultrasensitive detection of oncogenic microRNA8citations

Places of action

Chart of shared publication
Wu, Wei Chi
2 / 2 shared
Rath, Dharitri
1 / 1 shared
Nordin, Anis Nurashikin
1 / 2 shared
Sreearunothai, Paiboon
2 / 4 shared
Kabinsing, Pinpinut
2 / 2 shared
Wu, Wei-Chi
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Wu, Wei Chi
  • Rath, Dharitri
  • Nordin, Anis Nurashikin
  • Sreearunothai, Paiboon
  • Kabinsing, Pinpinut
  • Wu, Wei-Chi
OrganizationsLocationPeople

article

Magnetic graphene oxide nanocomposite as dual-mode genosensor for ultrasensitive detection of oncogenic microRNA

  • Wu, Wei-Chi
  • Sreearunothai, Paiboon
  • Kabinsing, Pinpinut
  • Malla, Pravanjan
Abstract

<p>MicroRNA (miRNA) is a noncoding RNA that controls cellular functions and gene expression. Several oncogenic miRNAs that aberrantly expressed in prostate cancer have the potential to be used as biomarkers. We designed multifunctional nanosheets that can capture, detect, and quantify miRNA 183-5p from prostate cancer cells with the aid of a disposable printed electrode and a portable potentiostat. Magnetic reduced graphene oxide (MrGO) has been used as the starting nanocomposite to analyze miRNA. Three cationic dyes—toluidine blue (TBO), thionine, and neutral red—were used to modify MrGO and evaluate its impact on the electron transfer rate. MrGO modified with TBO had the fastest conductivity and a large electrochemically active surface area. Two strategies were used to detect miRNA. One used peroxidase-labeled amplification and the other used TBO as the redox probe intercalating in the miRNA-capture probe duplex. The intercalator method reduced the complications of using peroxidase-labeled probes and exhibited superior performance. The limits of miRNA detection in human serum and urine were 3.73 and 0.86 aM, respectively, with a linear range from 0.1 nM to over 1 aM. The assay time of the intercalator method, including wash, was less than 16 min, and only one sample droplet (5 μL) was needed for analysis. We provided dual-mode genosensors for miRNA detection, which might be used for point-of-care testing. The incorporation of MrGO, screen-printed carbon electrodes, and portable potentiostat can accelerate biomarker detection, simplify analysis, and reduce the time and cost of analysis.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • Carbon
  • laser emission spectroscopy
  • additive manufacturing