People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muñoz, Jose
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2021Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to greatcitations
- 2021Chiral 3D-Printed Bioelectrodescitations
- 20200D polymer nanocomposite carbon-paste electrodes using carbon nanohornscitations
- 2020Electronic Performance of Polymer Carbon‐Paste Nanoallotropes from 0D to 3D as Novel Gate Electrodes in Water‐Gated Organic Field‐Effect Transistorscitations
- 2018Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrodecitations
- 2018Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samplescitations
- 2017Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Reviewcitations
- 2017Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensingcitations
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
Places of action
Organizations | Location | People |
---|
article
Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine
Abstract
© 2015 Elsevier B.V. The benefit of using copper (II) oxide nanoparticles (CuO-NPs), which have catalytic activity for the decomposition of hypochlorite solutions, for the amperometric detection of free chlorine is reported. Cyclic voltammetry and electrochemical impedance spectroscopy have been applied for the electrochemical characterization of nanocomposite materials. If the amperometric detection of free chlorine was determined previously using multiwall carbon nanotube (MWCNT) based epoxy nanocomposite sensors, the electrocatalytic reduction of hypochlorite using modified MWCNT/epoxy nanocomposite sensors with CuO-NPs to obtain sensitive devices capable to amperometrically determine traces of free chlorine in water is demonstrated here. The CuO-NPs were incorporated in the nanocomposite electrode in two different ways i) on the MWCNT surface, Route A and ii) in the nanocomposite matrix in powder form, Route B. Both modified-nanocomposite sensors have shown a fast electron transfer exchange, high electroactive area and an enhancement on the electroanalytical signal. Accordingly, a greater sensitivity compared to raw MWCNT/epoxy nanocomposite sensors has been observed, obtaining the lowest limit of detection for the CuO-NPs modified nanocomposite sensors obtained by Route B.