People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Céspedes, Francisco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2016Characterization protocol to improve the electroanalytical response of graphene-polymer nanocomposite sensorscitations
- 2016Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocompositescitations
- 2016Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrincitations
- 2016Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dotscitations
- 2016CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behaviorcitations
- 2016Intermatrix synthesis of Ag, AgAu and Au nanoparticles by the galvanic replacement strategy for bactericidal and electrocatalytically active nanocompositescitations
- 2015Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorinecitations
- 2015Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite compositioncitations
- 2015Effect of carbon nanotubes purification on electroanalytical response of near-percolation amperometric nanocomposite sensorscitations
- 2014Towards to the improvement of the analytical response in voltammetric sensors based on rigid compositescitations
- 2014Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticlescitations
- 2012Determination of total polyphenol index in wines employing a voltammetric electronic tonguecitations
- 2011A new amperometric bienzymatic biosensor based on biocomposites for the determination of gluconic acid in winescitations
- 2009Novel amperometric sensor based on rigid near-percolation compositecitations
- 2009Resolution of heavy metal mixtures from highly overlapped ASV voltammograms employing a wavelet neural networkcitations
Places of action
Organizations | Location | People |
---|
article
Improvement of the detection limit for biosensors: Advances on the optimization of biocomposite composition
Abstract
© 2014 Elsevier B.V. In this work the application of advanced characterization techniques in the development of amperometric biosensors based on biocomposites is described. The optimization of the conductive particle distribution and the amount of the biological material inside the biomaterial have allowed an improvement of the electrochemical properties, regarding the electroanalytical properties such as signal stability and limit of detection. The high signal-to-noise ratio obtained in the electrochemical transduction has allowed enhancing the limit of detection of the biosensor. In the present study, it has been demonstrated the feasibility of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) for the characterization and optimization of biosensors based on graphite-epoxy-enzyme, using an enzyme model. The optimum biocomposite proportion based on graphite-epoxy which incorporates the enzyme glucose oxidase (GOD) on the matrix ranges between 16% and 17% of graphite using 1% and 2% of enzyme. This range provides the optimal electroanalytical properties. Low limit of detection and good sensitivity have been achieved. Furthermore, confocal laser scanning microscopy was used to visualize the enzyme distribution onto the surface electrode.