People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roth, Hannah
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Poly(aryl ether ketone) hollow fibers preparation with acid resistant spinneretscitations
- 2022On the Mixed Gas Behavior of Organosilica Membranes Fabricated by Plasma-Enhanced Chemical Vapor Deposition (PECVD)citations
- 2022Rotating microstructured spinnerets produce helical ridge membranes to overcome mass transfer limitationscitations
- 2022Organosilica coating layer prevents aging of a polymer with intrinsic microporositycitations
- 2020Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatingscitations
Places of action
Organizations | Location | People |
---|
article
Poly(aryl ether ketone) hollow fibers preparation with acid resistant spinnerets
Abstract
<p>Poly(ether ketone ketone) (PEKK) and poly(ether ether ketone) (PEEK) are high-performing thermoplastics applicable for solvent-resistant nanofiltration due to their outstanding resistance to harsh conditions. However, the polymers require strong acids for solubilization and use as dope solution for membrane preparation. This is the major limitation when targeting hollow fibers (HF) since the metallic spinning line and spinnerets could be prone to corrosion in long term. In this work, we propose the fabrication of an acid-resistant spinneret by 3D printing technology through stereolithography using acrylate and methacrylate-based resins. The hollow fibers are produced by interplaying spinneret designs and spinning conditions with an acid-resistant spinning line. The fabricated hollow fibers exhibited N,N-dimethylformamide (DMF) permeance of 1.4–2.7 L m<sup>−2</sup> h<sup>−2</sup> bar<sup>−1</sup>, with a molecular weight cut-off around 246 g mol<sup>−1</sup> confirmed with more than 90% rejection of 1,3,5-tri-tert-butyl benzene (TTBB). Furthermore, the hollow fiber modules were tested at high-temperature filtration in DMF with confirmed membrane flux or structural dimension stability.</p>