Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fehlemann, Lukas

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Rotating microstructured spinnerets produce helical ridge membranes to overcome mass transfer limitations10citations

Places of action

Chart of shared publication
Luelf, Tobias
1 / 2 shared
Wessling, Matthias
1 / 35 shared
Roth, Hannah
1 / 5 shared
Tepper, Maik
1 / 3 shared
Rubner, Jens
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Luelf, Tobias
  • Wessling, Matthias
  • Roth, Hannah
  • Tepper, Maik
  • Rubner, Jens
OrganizationsLocationPeople

article

Rotating microstructured spinnerets produce helical ridge membranes to overcome mass transfer limitations

  • Luelf, Tobias
  • Wessling, Matthias
  • Roth, Hannah
  • Tepper, Maik
  • Fehlemann, Lukas
  • Rubner, Jens
Abstract

<p>Membrane geometry evolution boosts membrane applications to become even more sustainable, resource- and energy-efficient. This evolution is crucial as increasingly permeable membrane materials introduce the major drawback of promoting fluid resistance due to boundary layer formation. We present how to break these boundary layers with Helical Ridge Membranes produced by rotating microstructured spinnerets. 3D printing enables us to manufacture polymeric, microstructured spinnerets featuring grooved orifices. When integrating these spinnerets into a wet spinning process, microstructured hollow fiber membrane surfaces evolve. Our home-engineered spinning technology sets the spinneret in motion. Rotation twists the nascent microstructure and creates a helical ridge on the lumen side. A robust spinning process especially establishes for our novel spinneret device to rotate the needle inside the spinneret. The interplay of spinning conditions and spinneret rotation uncovers a range of producible helical ridge shapes, sizes and pitches. In addition, spinneret rotation speed affects intrinsic membrane properties, about which we derive general correlations. The helical ridges prove the manipulation of hydrodynamics inside hollow fiber membranes by inducing secondary flow. The latter enhances mass transfer to diminish boundary layers. Ultimately, a cross-flow ultrafiltration showcase reveals TMP gradients reduced by 350% and demonstrates the disruptive impact of Helical Ridge Membranes on membrane filtration.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • wet spinning