People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chew, John
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Accelerated modelling of moisture diffusion controlled drying using coupled physics informed neural network.citations
- 2020High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltrationcitations
- 2019Surface-controlled water flow in nanotube membranescitations
- 2018Air filter comprising polymer foam/adsorbent (e.g. zeolite)/antibacterial metal
- 2018AIR FILTERS
- 2012Elucidating enzyme-based cleaning of protein soils (gelatine and egg yolk) using a scanning fluid dynamic gaugecitations
Places of action
Organizations | Location | People |
---|
article
High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration
Abstract
<p>A novel thin film nanocomposite (TFN) membrane was obtained by incorporating boron nitride nanotubes (BNNTs) into a polyamide (PA) thin selective layer prepared via interfacial polymerisation. The addition of just 0.02 wt% of BNNTs led to a 4-fold increase in pure water permeance with no loss in rejection for divalent salts, methylene blue or humic acid compared to the pure PA membrane. Loadings higher than 0.02 wt% of BNNTs led to agglomeration with overall loss of performance. For the membranes containing 0.02 wt% BNNTs, the pure water permeance was 4.5 LMH@bar, with >90% rejection of MgSO<sub>4</sub> and >80% rejection of CaCl<sub>2</sub>. Fouling tests with humic acid showed a flux recovery ratio of >95% with ~50% lower flux loss during the fouling cycle compared to the polyamide only membrane. These values represent a significant improvement over both commercial polyamide membranes and TFN membranes incorporating carbon nanotubes. We assert that the very small quantity of BNNTs needed to produce the enhanced performance opens the way to their use in water treatment applications where nanofiltration membranes are subject to severe organic fouling.</p>