People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Konstas, Kristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Charge carrier molecular sieve (CCMS) membranes with anti-aging effect for long-life vanadium redox flow batteriescitations
- 2020Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costscitations
- 2019Thermally Rearranged Mixed Matrix Membranes (TR-MMM) for Permeability Enhancement and Mechanical Toughnesscitations
- 2017Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and its Effect on Polymer-MOF Interactioncitations
- 2017Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storagecitations
- 2016Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite filmscitations
- 2015Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in watercitations
- 2012Methane storage in metal organic frameworkscitations
- 2012Magnetic framework composites for polycyclic aromatic hydrocarbon sequestrationcitations
Places of action
Organizations | Location | People |
---|
article
Thermally Rearranged Mixed Matrix Membranes (TR-MMM) for Permeability Enhancement and Mechanical Toughness
Abstract
Thermally Rearranged (TR) polymers and Mixed Matrix Membranes (MMMs) are two effective approaches used to advance the performance of gas separation membranes. The TR approach can improve membrane performances by the inclusion of thermally activated groups that form hourglass-shaped cavities at high temperature, resulting in unusually high gas separation performance. On the other hand, MMMs’ inclusion of nanoparticles with engineered pore volume, window size and/or surface chemistry can add fast and selective pathways for enhanced membrane permselectivity. While both methods readily enhance permeation, researchers must also focus on the other factors affecting the application of advanced membrane materials, namely aging, plasticization, and mechanical stability. In this study, we explored the effects of combining these two approaches by adding ultra-porous and highly thermostable PAF-1 nanoparticles into the TR-able polymer, 6FDA-HAB5DAM5 (DAM). Gas separation performances of TR-MMMs were evaluated particularly by comparison with the pure polymer and another TR-MMM bearing an already thermally-treated PAF-1 additive (cPAF). By combining thermal rearrangement process with PAF-1, the resulting TR-MMM membrane demonstrated a 55-fold increase in CO2 gas permeability (37 for H2), without sacrificing gas selectivities or catastrophic film embrittlement observed in the case of pure TR film.