People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lammertink, Rob
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Streamer formation dynamics with mixed bacterial species: effects of cultivation conditions, hydrodynamics, and speciescitations
- 2024Mismatch and mix
- 2022Comparative assessment of hydrocarbon separation performance of bulky poly(urethane-urea)s toward rubbery membranescitations
- 2020Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanescitations
- 2019Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenderscitations
- 2017Fabrication of nanoporous graphene/polymer composite membranescitations
- 2015Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputteringcitations
- 2015Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Filmscitations
- 2011Hollow fiber ultrafiltration membranes with microstructured inner skincitations
- 2011Carbon nanofibers in catalytic membrane microreactorscitations
- 2010Microstructured hollow fibers for ultrafiltrationcitations
- 2010Shrinkage effects during polmer phase separation on microfabricated moldscitations
- 2010Surface texturing inside ceramic macro/micro channelscitations
- 2010Polymeric microsieves via phase separation microfabricationcitations
- 2009Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stampscitations
- 2009Micropatterned polymer films by vapor-induced phase separation using permeable moldscitations
- 2007Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Currentcitations
- 2006Polymeric microsieves produced by phase separation micromoldingcitations
- 2006Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Stepcitations
- 2005New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porositycitations
- 2005Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Goldcitations
Places of action
Organizations | Location | People |
---|
article
Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenders
Abstract
<p>A series of poly(urethane-urea) (PUU) membranes based on contributing hard segments in gas separation were prepared using two novel bulky chain extenders, polytetramethylene-glycol, isophorone and hexamethylene-diisocyanate. The chain extenders were synthesized by cyanuric chloride, aniline/naphthylamine and hydrazine. According to FTIR, AFM and DSC, bulkier PUU membranes showed more phase separation and lower glass transition temperature consistent with higher fractional free volume, which were correlated with single (CO<sub>2</sub>, CH<sub>4</sub>, O<sub>2</sub> and N<sub>2</sub>) and mixed (CO<sub>2</sub>:N<sub>2</sub> and CO<sub>2</sub>:CH<sub>4</sub>) gas permeation results. The main findings indicate these polyurethanes serve efficiently designed molecular structures favoring bulky hard segments contribution in gas separation. The bulky PUU membranes afford simultaneous increased permeability and selectivity, while maintaining high tensile properties. Enhanced O<sub>2</sub>/N<sub>2</sub> diffusivity selectivity by bulkier PUU and CO<sub>2</sub> sorption/desorption study by Ellipsometry confirmed hard segments’ association, too. The bulkiest membrane provided 126% and 54% improvement for single CO<sub>2</sub> permeability and CO<sub>2</sub>/N<sub>2</sub> selectivity compared to linear one.</p>