People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prestat, Eric
Culham Centre for Fusion Energy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Splenic Capture and In Vivo Intracellular Biodegradation of Biological-grade Graphene Oxide Sheetscitations
- 2019Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assemblycitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017A Simple Electrochemical Route to Metallic Phase Trilayer MoS2: evaluation as Electrocatalysts and Supercapacitorscitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO 3 nanoparticles for catalysiscitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017In Situ Industrial Bimetallic Catalyst Characterisation using Scanning Transmission Electron Microscopy and X-Ray Absorption Spectroscopy at One Atmosphere and Elevated Temperaturecitations
- 2017Observing imperfection in atomic interfaces for van der Waals heterostructurescitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H2/N2-H2O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017EXPLORING NANOSCALE PRECURSOR REACTIONS IN ALLOY 600 IN H 2 /N 2 -H 2 O VAPOR USING IN SITU ANALYTICAL TRANSMISSION ELECTRON MICROSCOPYcitations
- 2017Role of 2D and 3D defects on the reduction of LaNiO3 nanoparticles for catalysiscitations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016The Application of In Situ Analytical Transmission Electron Microscopy to the Study of Preferential Intergranular Oxidation in Alloy 600citations
- 2016Imaging the hydrated microbe-metal interface using nanoscale spectrum imagingcitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2014Real-time imaging and elemental mapping of AgAu nanoparticle transformationscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers
Abstract
Organophilic mixed matrix membranes (MMMs) have been fabricated with the polymer of intrinsic microporosity PIM-1 and graphene oxide (GO) derivatives for the recovery of 1-butanol and ethanol from aqueous solutions via pervaporation (PV). Graphene oxide (GO) has been synthesized in solution through a modified Hummers’ method, functionalized with alkylamines, and further reduced. The use of two alkylamines with chains of different lengths, octylamine (OA) and octadecylamine (ODA) −8 and 18 carbons, respectively - has been evaluated and the functionalized GO materials have been used as fillers in MMMs. The membranes have been prepared by casting-solvent evaporation of PIM-1/GO derivative solutions at room temperature, and a range of characterization techniques have been used to interpret their structure and relate it to their separation performance. Electron microscopy has been carried out to determine the morphology of the membranes and the dispersion of the functionalized GO flakes in the polymer matrix. Moreover, the membranes have been characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and contact angle. Separation of alcohol from two binary mixtures composed of ethanol (EtOH)/water and butanol (BtOH)/water, containing 5 wt% of alcohol, have been performed. Under these conditions, the incorporation of graphene-like fillers at relatively low concentrations shows an increase in average separation factor for butanol (βBtOH/H2O) from 13.5 for pure PIM-1 membranes to, in some cases, more than double for the MMMs; with the addition of 0.1 wt% of reduced amine-functionalized GO βBtOH/H2O reaches 32.9 and 26.9 for the short-chain (OA) and the long-chain (ODA) alkylamines, respectively.