Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Warsinger, David M.

  • Google
  • 1
  • 7
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes42citations

Places of action

Chart of shared publication
Arafat, Hassan A.
1 / 1 shared
V., John H. Lienhard
1 / 1 shared
Livernois, William
1 / 1 shared
Gleason, Karen K.
1 / 7 shared
Notarangelo, Katie
1 / 1 shared
Guillen-Burrieza, Elena
1 / 1 shared
Servi, Amelia T.
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Arafat, Hassan A.
  • V., John H. Lienhard
  • Livernois, William
  • Gleason, Karen K.
  • Notarangelo, Katie
  • Guillen-Burrieza, Elena
  • Servi, Amelia T.
OrganizationsLocationPeople

article

The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes

  • Arafat, Hassan A.
  • V., John H. Lienhard
  • Livernois, William
  • Gleason, Karen K.
  • Notarangelo, Katie
  • Guillen-Burrieza, Elena
  • Warsinger, David M.
  • Servi, Amelia T.
Abstract

Membranes possessing high permeability to water vapor and high liquid entry pressure (LEP) are necessary for efficient membrane distillation (MD) desalination. A common technique to prepare specialized MD membranes consists of coating a hydrophilic or hydrophobic base membrane with a low surface-energy material. This increases its liquid entry pressure, making the membrane suitable for MD. However, in addition to increasing LEP, the surface-coating may also decrease permeability of the membrane by reducing its average pore size. In this study, we quantify the effects of initiated chemical vapor deposition (iCVD) polymer coatings on membrane permeability and LEP. We consider whether the iCVD films should have minimized thickness or maximized non-conformality, in order to maximize the permeability achieved for a given value of LEP. We determined theoretically that permeability of a single pore is maximized with a highly non-conformal iCVD coating. However, the overall permeability of a membrane consisting of many pores is maximized when iCVD film thickness is minimized. We applied the findings experimentally, preparing an iCVD-treated track-etched polycarbonate (PCTE) membrane and testing it in a permeate gap membrane distillation (PCMD) system. This study focuses on membranes with clearly defined, cylindrical pores. However, we believe that the principles we discuss will extend to membranes with more complex pore architectures. Overall, this work indicates that the focus of surface-coating development should be on minimizing film thickness, not on increasing their non-conformality.

Topics
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • molecular dynamics
  • permeability
  • chemical vapor deposition
  • distillation